Skip to main content
Log in

Relaxation of excited states of an emitter near a metal nanoparticle: An analysis based on superradiance theory

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Methods of superradiance theory are employed for determining the relaxation rate of the excited state of a resonant emitter (atom, molecule, or quantum dot) near a metal nanoparticle under resonant excitation of plasmons in it, viz., modes of spatially uniform (dipole) harmonic oscillations of the electron density. Detuning from resonance and nonradiative loss suppressing radiation from the emitter near the nanoparticle surface are taken into account. The results are used to estimate the threshold conditions for generating a plasmon (“dipole”) nanolaser. It is shown that the threshold conditions of induced (laser) generation of plasmons for the emitter at a distance of 5–40 nm from an ellipsoidal nanoparticle are satisfied for relatively low emitter pumping rates (on the order of the rate of spontaneous emission of the emitter into the free space).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Th. Richter, Ann. Phys. (Weinheim) 491, 266 (1979).

    Article  ADS  Google Scholar 

  2. P. W. Milonni and P. L. Knight, Phys. Rev. A: At., Mol., Opt. Phys. 10, 1096 (1974).

    Article  ADS  Google Scholar 

  3. I. E. Protsenko, J. Exp. Theor. Phys. 103(2), 167 (2006).

    Article  ADS  Google Scholar 

  4. V. Weisskopf and E. Wigner, Z. Phys. 63, 54 (1930).

    Article  MATH  ADS  Google Scholar 

  5. A. N. Oraevskii, Phys.-Usp. 37(4), 393 (1994).

    Article  ADS  Google Scholar 

  6. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, Chem. Rev. 111, 3669 (2011).

    Article  Google Scholar 

  7. S. M. Morton, D. W. Silverstein, and L. Jensen, Chem. Rev. 111, 3962 (2011).

    Article  Google Scholar 

  8. E. S. Andrianov, A. A. Pukhov, A. P. Vinogradov, A. V. Dorofeenko, and A. A. Lisyansky, JETP Lett. 97(8), 452 (2013).

    Article  ADS  Google Scholar 

  9. E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, J. Exp. Theor. Phys. 117(2), 205 (2013).

    Article  ADS  Google Scholar 

  10. V. V. Klimov, Phys.-Usp. 46(9), 979 (2003).

    Article  ADS  Google Scholar 

  11. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009; Pan Stanford, Singapore, 2014).

    Google Scholar 

  12. E. M. Purcell, Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  13. H. Mertens, A. F. Koenderink, and A. Polman, Phys. Rev. B: Condens. Matter 76, 115123 (2007).

    Article  ADS  Google Scholar 

  14. J. B. Khurgin and G. Sun, J. Opt. Soc. Am. B 26, B83 (2009).

    Article  ADS  Google Scholar 

  15. G. Bjork, A. Karlsson, and Y. Yamamoto, Phys. Rev. A: At., Mol., Opt. Phys. 50, 1675 (1994).

    Article  ADS  Google Scholar 

  16. I. Protsenko, P. Domokos, V. Lefévre-Seguin, J. Hare, J. M. Raimond, and L. Davidovich, Phys. Rev. A: At., Mol., Opt. Phys. 59, 1667 (1999).

    Article  ADS  Google Scholar 

  17. I. E. Protsenko, J. Russ. Laser Res. 33, 559 (2012).

    Article  Google Scholar 

  18. I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, Phys. Rev. A: At., Mol., Opt. Phys. 71, 063812 (2005).

    Article  ADS  Google Scholar 

  19. P. Anger, P. Bharadwaj, and L. Novotny, Phys. Rev. Lett. 96, 113002 (2006).

    Article  ADS  Google Scholar 

  20. P. Johansson, H. Xu, and M. Käll, Phys. Rev. B: Condens. Matter 72, 035427 (2005).

    Article  ADS  Google Scholar 

  21. J. B. Khurgin and G. Sun, Appl. Phys. Lett. 100, 011105 (2012).

    Article  ADS  Google Scholar 

  22. E. V. Tkalya, JETP Lett. 71(8), 311 (2000).

    Article  ADS  Google Scholar 

  23. M. J. Collett and C. W. Gardiner, Phys. Rev. A: At., Mol., Opt. Phys. 30, 1386 (1984).

    Article  ADS  Google Scholar 

  24. Y. S. Kim, P. T. Leung, and T. F. George, Surface Sci. 195, 1 (1988).

    Article  ADS  Google Scholar 

  25. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, Phys. Rev. B: Condens. Matter 86, 235147 (2012).

    Article  ADS  Google Scholar 

  26. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Volume 8: Electrodynamics of Continuous Media (Fizmatlit, Moscow, 2001; Butterworth-Heinemann, Oxford, 2002).

    Google Scholar 

  27. D. V. Guzatov and V. V. Klimov, Chem. Phys. Lett. 412, 341 (2005).

    Article  ADS  Google Scholar 

  28. P. Bharadwaj and L. Novotny, Opt. Express 15, 14266 (2007).

    Article  ADS  Google Scholar 

  29. N. Gregersen, T. Suhr, M. Lorke, and J. Mørk, Appl. Phys. Lett. 100, 131107 (2012).

    Article  ADS  Google Scholar 

  30. R. A. Pasmanter and A. Ben-Reuven, J. Quant. Spectrosc. Radiat. Transfer 13, 57 (1973).

    Article  ADS  Google Scholar 

  31. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V.M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, Nature (London) 460, 1110 (2009).

    Article  ADS  Google Scholar 

  32. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Volume 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Butterworth-Heinemann, Oxford, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Protsenko.

Additional information

Original Russian Text © I.E. Protsenko, A.V. Uskov, V.M. Rudoi, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 146, No. 2, pp. 265–280.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Protsenko, I.E., Uskov, A.V. & Rudoi, V.M. Relaxation of excited states of an emitter near a metal nanoparticle: An analysis based on superradiance theory. J. Exp. Theor. Phys. 119, 227–241 (2014). https://doi.org/10.1134/S1063776114080147

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114080147

Keywords

Navigation