Skip to main content
Log in

Method for retrieving the refractive index of ordered particles from data on the photonic band gap

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A method for retrieving the refractive index of spherical particles arranged into ordered structures is proposed. It is based on the solution of the inverse problem using data on the photonic band gap. The solution has been obtained within the quasi-crystalline approximation of the multiple wave scattering theory and the transfer-matrix method. Quantitative results are presented for systems of silicon oxide particles. The effective refractive indices of synthetic opal particles have been found from the available experimental data on the spectral position of the photonic band gap. The described technique is applicable for retrieving not only the refractive index of particles but also other characteristics of ordered particulate structures from the coherent transmittance spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, New Jersey, United States, 2008).

    Google Scholar 

  2. I. A. Sukhoivanov and I. V. Guryev, Photonic Crystals: Physics and Practical Modeling (Springer-Verlag, New York, 2009).

    Book  Google Scholar 

  3. H. Cong, B. Yu, J. Tang, Z. Li, and X. Liu, Chem. Soc. Rev. 42, 7774 (2013).

    Article  Google Scholar 

  4. H. S. Lee, T. S. Shim, H. Hwang, S.-M. Yang, and S.-H. Kim, Chem. Mater. 25, 2684 (2013).

    Article  Google Scholar 

  5. E. Yablonovitch and T. J. Gmitter, Phys. Rev. Lett. 63, 1950 (1989).

    Article  ADS  Google Scholar 

  6. J. J. Wierer, Jr., A. David, and M. M. Megens, Nat. Photonics 3, 163 (2009).

    Article  ADS  Google Scholar 

  7. A. Chutinan, N. P. Kherani, and S. Zukotynski, Opt. Express 17, 8871 (2009).

    Article  ADS  Google Scholar 

  8. S. Guldin, S. Hüttner, M. Kolle, M. E. Welland, P. Müller-Buschbaum, R. H. Friend, U. Steiner, and N. Tétreault, Nano Lett. 10, 2303 (2010).

    Article  ADS  Google Scholar 

  9. A. C. Arsenault, D. P. Puzzo, I. Manners, and G. A. Ozin, Nat. Photonics 1, 468 (2007).

    Article  ADS  Google Scholar 

  10. D. Sizov, R. Bhat, and C. E. Zah, J. Lightwave Technol. 30, 679 (2012).

    Article  ADS  Google Scholar 

  11. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, New York, 2005).

    Google Scholar 

  12. J. B. Wright, S. Liu, G. T. Wang, Q. Li, A. Benz, D. D. Koleske, P. Lu, H. Xu, L. Lester, T. S. Luk, I. Brener, and G. Subramania, Sci. Rep. 3, 2982 (2013).

    ADS  Google Scholar 

  13. V. S. Gorelik, A. D. Kudryavtseva, and N. V. Tcherniega, J. Russ. Laser Res. 29, 551 (2008).

    Article  Google Scholar 

  14. I. I. Shishkin, K. B. Samusev, M. V. Rybin, M. F. Limonov, Yu. S. Kivshar’, A. Gaidukeviciute, R. V. Kiyan, and B. N. Chichkov, JETP Lett. 95(9), 457 (2012).

    Article  ADS  Google Scholar 

  15. M. V. Vasnetsov, V. Yu. Bazhenov, S. S. Slussarenko, and G. Abbate, J. Opt. Soc. Am. B 26, 684 (2009).

    Article  ADS  Google Scholar 

  16. M. V. Vasnetsov, V. Yu. Bazhenov, S. S. Slussarenko, and G. Abbate, J. Opt. Soc. Am. B 26, 1975 (2009).

    Article  Google Scholar 

  17. M. V. Rybin, A. B. Khanikaev, M. Inoue, K. B. Samusev, M. J. Steel, G. Yushin, and M. F. Limonov, Phys. Rev. Lett. 103, 023901 (2009).

    Article  ADS  Google Scholar 

  18. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 2005).

    Google Scholar 

  19. V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 55, 7619 (1997).

    Article  Google Scholar 

  20. M. Lax, Rev. Mod. Phys. 23, 287 (1951).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. M. Lax, Phys. Rev. 85, 621 (1952).

    Article  MATH  ADS  Google Scholar 

  22. A. A. Miskevich and V. A. Loiko, J. Quant. Spectrosc. Radiat. Transfer. 136, 58 (2014).

    Article  ADS  Google Scholar 

  23. V. A. Loiko and A. A. Miskevich, Opt. Spectrosc. 115(2), 274 (2013).

    Article  ADS  Google Scholar 

  24. A. A. Miskevich and V. A. Loiko, J. Exp. Theor. Phys. 113(1), 1 (2011).

    Article  ADS  Google Scholar 

  25. A. A. Miskevich and V. A. Loiko, J. Quant. Spectrosc. Radiat. Transfer. 112, 1082 (2011).

    Article  ADS  Google Scholar 

  26. C. C. Katsidis and D. I. Siapkas, Appl. Opt. 41, 3978 (2002).

    Article  ADS  Google Scholar 

  27. E. Centurioni, Appl. Opt. 44, 7532 (2005).

    Article  ADS  Google Scholar 

  28. M. C. Troparevsky, A. S. Sabau, A. R. Lupini, and Z. Zhang, Opt. Express 18(24), 24715 (2010).

    Article  ADS  Google Scholar 

  29. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

    Google Scholar 

  30. S. Twomey, Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements (Elsevier, Amsterdam, The Netherlands, 1977).

    Google Scholar 

  31. R. Xu, Particle Characterization: Light Scattering Methods (Kluwer, New York, 2000).

    Google Scholar 

  32. A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems (Wiley, New York, 1977).

    MATH  Google Scholar 

  33. E. Kissa, Dispersions: Characterization, Testing, and Measurement (Marcel Dekker, New York, 1999).

    Google Scholar 

  34. Y. Wang, S. Fan, X. Feng, G. J. Yan, and Y. N. Guan, Appl. Opt. 45, 7456 (2006).

    Article  ADS  Google Scholar 

  35. V. V. Berdnik, V. A. Loiko, and A. P. Ivanov, J. Opt. Soc. Am. A 14, 1880 (1997).

    Article  ADS  Google Scholar 

  36. V. A. Loiko, A. V. Konkolovich, and A. A. Miskevich, Opt. Spectrosc. 101(4), 642 (2006).

    Article  ADS  Google Scholar 

  37. V. A. Loiko, A. V. Konkolovich, and A. A. Miskevich, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 74, 031704 (2006).

    Article  ADS  Google Scholar 

  38. V. Berdnik, R. Mukhamedyarov, and V. Loiko, Opt. Lett. 29, 1019 (2004).

    Article  ADS  Google Scholar 

  39. V. A. Loiko and V. V. Berdnik, Appl. Opt. 48, 6178 (2009).

    Article  ADS  Google Scholar 

  40. S. A. Grudinkin, S. F. Kaplan, N. F. Kartenko, D. A. Kurdyukov, and V. G. Golubev, J. Phys. Chem. C 112, 17855 (2008).

    Article  Google Scholar 

  41. M. V. Vasnetsov, T. N. Orlova, V. Yu. Bazhenov, A. S. Shevchuk, A. D. Kudryavtseva, and N. V. Tcherniega, Appl. Phys. B (2013) (in press). doi:10.1007/s00340-013-5730-9

    Google Scholar 

  42. C. I. Aguirre, E. Reguera, and A. Stein, Adv. Funct. Mater. 20, 2565 (2010).

    Article  Google Scholar 

  43. C. G. Schäfer, M. Gallei, G. P. Hellmann, M. Biesalski, and M. Rehahn, Proc. SPIE-Int. Soc. Opt. Eng. 8816, 88160V (2013). doi:10.1117/12.2023876

    Google Scholar 

  44. O. Deparis, C. Vandenbem, M. Rassart, V. L. Welch, and J.-P. Vigneron, Opt. Express 14, 3547 (2006).

    Article  ADS  Google Scholar 

  45. J. A. Noyes, P. Vukusic, and I. R. Hooper, Opt. Express 15, 4351 (2007).

    Article  ADS  Google Scholar 

  46. P. Vukusic, B. Hallam, and J. Noyes, Sciences (Washington) 315, 348 (2007).

    Article  Google Scholar 

  47. C. Pouya, D. G. Stavenga, and P. Vukusic, Opt. Express. 19, 11355 (2011).

    Article  ADS  Google Scholar 

  48. H. L. Tam, K. W. Cheah, D. T. P. Goh, and J. K. L. Goh, Opt. Mater. Express 3, 1087 (2013).

    Article  Google Scholar 

  49. K. M. Hong, J. Opt. Soc. Am. 70, 821 (1980).

    Article  ADS  Google Scholar 

  50. V. K. Varadan, V. N. Bringi, V. V. Varadan, and A. Ishimaru, Radio Sci. 18, 321 (1983).

    Article  ADS  Google Scholar 

  51. A. P. Ivanov, V. A. Loiko, and V. P. Dik, Light Propagation in Close-Packed Disperse Media (Nauka i Tekhnika, Minsk, 1988) [in Russian].

    Google Scholar 

  52. J. A. Lock and Ch.-L. Chiu, Appl. Opt. 33, 4663 (1994).

    Article  ADS  Google Scholar 

  53. L. Tsang, J. A. Kong, K.-H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves: Numerical Simulations (Wiley, New York, 2000).

    Book  Google Scholar 

  54. V. A. Loiko and A. A. Miskevich, Appl. Opt. 44, 3759 (2005).

    Article  ADS  Google Scholar 

  55. J. M. Ziman, Models of Disorder (Cambridge University Press, Cambridge, 1979).

    Google Scholar 

  56. Z. Fisher, Statistical Theory of Liquids (University of Chicago Press, Chicago, Illinois, United States, 1964).

    Google Scholar 

  57. A. F. Skryshevskii, Structural Analysis of Liquids and Amorphous Solids (Vysshaya Shkola, Moscow, 1980) [in Russian].

    Google Scholar 

  58. K. Ohtaka and M. Inoue, Phys. Rev. B: Condens. Matter 25, 677 (1982).

    Article  ADS  Google Scholar 

  59. M. Inoue, K. Ohtaka, and S. Yanagawa, Phys. Rev. B: Condens. Matter 25, 689 (1982).

    Article  ADS  Google Scholar 

  60. H. Miyazaki and K. Ohtaka, Phys. Rev. B: Condens. Matter 58, 6920 (1998).

    Article  ADS  Google Scholar 

  61. V. A. Loiko, V. P. Dick, and V. I. Molochko, J. Opt. Soc. Am. A 15, 2351 (1998).

    Article  ADS  Google Scholar 

  62. Handbook of Optical Constants of Solids, Ed. by E. D. Palik (Academic, San Diego, California, United States, 1985).

    Google Scholar 

  63. M. Debenham and G. D. Dew, J. Phys. E: Sci. Instrum. 14, 544 (1981).

    Article  ADS  Google Scholar 

  64. http://refractiveindex.info.

  65. L. S. Ornstein and F. Zernike, Proc. R. Acad. Sci. Amsterdam 17, 793 (1914).

    Google Scholar 

  66. J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  67. V. N. Bogomolov, D. A. Kurdyukov, A. V. Prokof’ev, and S. M. Samoilovich, JETP Lett. 63(7), 520 (1996).

    Article  ADS  Google Scholar 

  68. V. N. Bogomolov, L. S. Parfen’eva, A. V. Prokof’ev, I. A. Smirnov, S. M. Samoilovich, A. Jezowskii, J. Mucha, and H. Miserek, Phys. Solid State 37(11), 1874 (1995).

    ADS  Google Scholar 

  69. V. M. Masalov, N. S. Sukhinina, E. A. Kudrenko, and G. A. Emelchenko, Nanotechnology 22, 275718 (2011).

    Article  ADS  Google Scholar 

  70. V. V. Berdnik and V. A. Loiko, Appl. Opt. 50, 4246 (2011).

    Article  ADS  Google Scholar 

  71. V. A. Babenko, L. G. Astafyeva, and V. N. Kuzmin, Electromagnetic Scattering in Disperse Media (Praxis, Chichester, United Kingdom, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Miskevich.

Additional information

Original Russian Text © A.A. Miskevich, V.A. Loiko, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 146, No. 2, pp. 246–264.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miskevich, A.A., Loiko, V.A. Method for retrieving the refractive index of ordered particles from data on the photonic band gap. J. Exp. Theor. Phys. 119, 211–226 (2014). https://doi.org/10.1134/S106377611408010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611408010X

Keywords

Navigation