Skip to main content
Log in

Solution to the paradox of the linear stability of the Hagen-Poiseuille flow and the viscous dissipative mechanism of the emergence of turbulence in a boundary layer

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

It has been shown that the conclusion of the linear instability of the Hagen-Poiseuille flow at finite Reynolds numbers requires the refusal of the use of the traditional “normal” form of the representation of disturbances, which implies the possibility of separation of variables describing disturbances as functions of the radial and longitudinal (along the axis of a tube) coordinates. In the absence of such separation of variables in the developed linear theory, it has been proposed to use a modification of the Bubnov-Galerkin theory that makes it possible to take into account the difference between the periods of the longitudinal variability for different radial modes preliminarily determined by the standard application of the Galerkin-Kantorovich method to the evolution equation of extremely small axisymmetric disturbances of the tangential component of the velocity field. It has been shown that the consideration of even two linearly interacting radial modes for the Hagen-Poiseuille flow can provide linear instability only in the presence of the mentioned conditionally periodic longitudinal variability of disturbances along the axis of the tube, when the threshold Reynolds number Reth(p) is very sensitive to the ratio p of two longitudinal periods each describing longitudinal variability for its radial disturbance mode. In this case, the threshold Reynolds number can tend to infinity, Reth(p) → ∞, only at p = p k = k, p = p 1/k = 1/k, and \(p = p_{\sqrt k } = [k + 1 \pm \sqrt {(k + 1)^2 - 4} ]/2\), where k = 1, 2, 3, …. The minimum Reynolds number Reth(p) ≈ 448 (at which p ≈ 1.527) for the linear instability of the Hagen-Poiseuille flow quantitatively corresponds to the condition of the excitation of Tollmien-Schlichting waves in the boundary layer, where Reth = 420. Similarity of the mechanisms of linear viscous dissipative instability for the Hagen-Poiseuille flow and Tollmien-Schlichting waves has been discussed. Good quantitative agreement has been obtained between the phase velocities of the vortex disturbances and the experimental data on the velocities of the leading and trailing edges of turbulent “puffs” propagating along the axis of the tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Reynolds, Proc. R. Soc. London 35, 84 (1883).

    Article  Google Scholar 

  2. D. Joseph, Stability of Fluid Motions (Springer-Verlag, Heidelberg, Germany, 1976; Mir, Moscow, 1981).

    Google Scholar 

  3. P. G. Drazin and N. H. Reid, Hydrodynamic Stability (Cambridge University Press, Cambridge, United Kingdom, 1981).

    MATH  Google Scholar 

  4. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Volume 6: Fluid Mechanics (Butterworth-Heinemann, Oxford, 2000; Nauka, Moscow, 2006).

    Google Scholar 

  5. S. Grossman, Rev. Mod. Phys. 72, 603 (2000).

    Article  ADS  Google Scholar 

  6. R. Fitzegerald, Phys. Today 57, 21 (2004).

    Article  Google Scholar 

  7. H. Faisst and B. Eckhardt, Phys. Rev. Lett. 91, 224502 (2003).

    Article  ADS  Google Scholar 

  8. H. Wedin and R. Kerswell, J. Fluid Mech. 508, 333 (2004).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. T. M. Schneider, B. Eckhardt, and J. A. Yorke, Phys. Rev. Lett. 99, 034502 (2007).

    Article  ADS  Google Scholar 

  10. J. D. Skufca, J. A. Yorke, and B. Eckhardt, Phys. Rev. Lett. 96, 174101 (2006).

    Article  ADS  Google Scholar 

  11. W. Pfenniger, in Boundary Layer and Flow Control, Ed. by G. V. Lachmann (Pergamon, London, 1961), Vol. 2, p. 970.

  12. J. A. Fox, M. Lessen, and W. V. Bhat, Phys. Fluids 11, 1 (1968).

    Article  ADS  Google Scholar 

  13. A. S. Monin, Sov. Phys.-Usp. 29(9), 243 (1986).

    Article  MathSciNet  Google Scholar 

  14. R. R. Kerswell and A. Davey, J. Fluid Mech. 316, 307 (1996).

    Article  MATH  ADS  Google Scholar 

  15. D. R. Barnes and R. R. Kerswell, J. Fluid Mech. 417, 103 (2000).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. P. A. Mackrodt, J. Fluid Mech. 73, 153 (1976).

    Article  MATH  ADS  Google Scholar 

  17. J. P. Matas, J. F. Morris, and E. Guazzlli, Phys. Rev. Lett. 90, 014501 (2003).

    Article  ADS  Google Scholar 

  18. G. Z. Gershuni, Sorosovskii Obraz. Zh., Fiz., No. 2, 99 (1997).

    Google Scholar 

  19. L. D. Landau, Zh. Eksp. Teor. Fiz. 11, 592 (1941).

    Google Scholar 

  20. S. G. Chefranov, JETP Lett. 73(6), 274 (2001).

    Article  ADS  Google Scholar 

  21. S. G. Chefranov, J. Exp. Theor. Phys. 99(2), 296 (2004).

    Article  ADS  Google Scholar 

  22. S. G. Chefranov, Phys. Rev. Lett. 93, 254801 (2004).

    Article  ADS  Google Scholar 

  23. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, Volume 1: Mechanics of Turbulence (Gidrometeoizdat, St. Petersburg, 1992; Dover, New York, 2007).

    Google Scholar 

  24. B. J. Cantwell, Annu. Rev. Fluid Mech. 13, 457 (1981).

    Article  ADS  Google Scholar 

  25. Yu. S. Kachanov, V. V. Kozlov, and V. Ya. Levchenko, Origin of Turbulence in Boundary Layers (Siberian Brunch of the Academy of Sciences of the Soviet Union, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  26. R. J. Leite, J. Fluid Mech. 5, 81 (1959).

    Article  MATH  ADS  Google Scholar 

  27. S. J. Davies and C. M. White, Proc. R. Soc. London, Ser. A 69, 92 (1928).

    Article  ADS  Google Scholar 

  28. I. J. Wygnanski and F. H. Champagne, J. Fluid Mech. 59, 281 (1973).

    Article  ADS  Google Scholar 

  29. J. Peixinho and T. Mullin, Phys. Rev. Lett. 96, 094501 (2006).

    Article  ADS  Google Scholar 

  30. B. Hof, C. W. H. van Doorne, J. Westerweel, and F. T. M. Neiuwstadt, Phys. Rev. Lett. 95, 214502 (2005).

    Article  ADS  Google Scholar 

  31. G. B. Schubauer and H. K. Skramstad, Laminar Boundary-Layer Oscillations and Stability of Laminar Flow (United States National Advisory Committee for Aeronautics, Pasadena, California, United States, 1948), Rep. No. 909.

    Google Scholar 

  32. F. T. Smith and R. J. Bodonyi, Proc. R. Soc. London, Ser. A 384, 463 (1982).

    Article  MATH  ADS  Google Scholar 

  33. F. T. Smith, D. J. Doorly, and A. P. Rothmayer, Proc. R. Soc. London, Ser. A 428, 255 (1990).

    Article  MATH  ADS  Google Scholar 

  34. A. G. Walton, Proc. R. Soc. London, Ser. A 461, 813 (2005).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. I. J. Wygnanski and F. H. Champagne, J. Fluid Mech. 59, 281 (1973).

    Article  ADS  Google Scholar 

  36. A. P. Willis and R. R. Kerswell, Phys. Rev. Lett. 100, 124501 (2008).

    Article  ADS  Google Scholar 

  37. A. P. Willis and R. R. Kerswell, J. Fluid Mech. 619, 213 (2009).

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Chefranov.

Additional information

Original Russian Text © S.G. Chefranov, A.G. Chefranov, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 146, No. 2, pp. 373–383.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chefranov, S.G., Chefranov, A.G. Solution to the paradox of the linear stability of the Hagen-Poiseuille flow and the viscous dissipative mechanism of the emergence of turbulence in a boundary layer. J. Exp. Theor. Phys. 119, 331–340 (2014). https://doi.org/10.1134/S1063776114070127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114070127

Keywords

Navigation