Skip to main content
Log in

Nonlinear dynamics of magnetohydrodynamic flows of a heavy fluid on slope in the shallow water approximation

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Magnetohydrodynamic equations for a heavy fluid over an arbitrary surface are studied in the shallow water approximation. While solutions to the shallow water equations for a neutral fluid are well known, shallow water magnetohydrodynamic (SMHD) equations over a nonflat boundary have an additional dependence on the magnetic field, and the number of equations in the magnetic case exceeds that in the neutral case. As a consequence, the number of Riemann invariants defining SMHD equations is also greater. The classical simple wave solutions do not exist for hyperbolic SMHD equations over an arbitrary surface due to the appearance of a source term. In this paper, we suggest a more general definition of simple wave solutions that reduce to the classical ones in the case of zero source term. We show that simple wave solutions exist only for underlying surfaces that are slopes of constant inclination. All self-similar discontinuous and continuous solutions are found. Exact explicit solutions of the initial discontinuity decay problem over a slope are found. It is shown that the initial discontinuity decay solution is represented by one of four possible wave configurations. For each configuration, the necessary and sufficient conditions for its realization are found. The change of dependent and independent variables transforming the initial equations over a slope to those over a flat plane is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Gilman, Astrophys. J. 544, L79 (2000).

    Article  ADS  Google Scholar 

  2. H. De Sterck, Phys. Plasmas 8, 3293 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Miesch and P. Gilman, Sol. Phys. 220, 287 (2004).

    Article  ADS  Google Scholar 

  4. T. V. Zaqarashvili, R. Oliver, and J. L. Ballester, Astrophys. J. Lett. 691, L41 (2009).

    Article  ADS  Google Scholar 

  5. T. V. Zaqarashvili, M. Carbonell, R. Oliver, and J. L. Ballester, Astrophys. J. Lett. 724, L95 (2010).

    Article  ADS  Google Scholar 

  6. N. A. Inogamov and R. A. Sunyaev, Astron. Lett. 25, 269 (1999).

    ADS  Google Scholar 

  7. N. A. Inogamov and R. A. Sunyaev, Astron. Lett. 36, 848 (2010).

    Article  ADS  Google Scholar 

  8. A. Spitkovsky, Y. Levin, and G. Ushomirsky, Astrophys. J. 566, 1018 (2002).

    Article  ADS  Google Scholar 

  9. K. Heng and A. Spitkovsky, Astrophys. J. 703, 1819 (2009).

    Article  ADS  Google Scholar 

  10. J. Cho, Philos. Trans. R. Soc. London, Ser. A 366, 4477 (2008).

    Article  ADS  Google Scholar 

  11. V. Bojarevics and K. Pericleous, in Proceedings of the Joint 15th Riga and 6th Pamir International Conference on Fundamental and Applied MHD, Jurmala, Latvia, June 27–July 1, 2005 (Jurmala, 2005), p. 87.

    Google Scholar 

  12. O. Zikanov, A. Thess, P. A. Davidson, and D. P. Ziegler, Metall. Mater. Trans. B 31, 1541 (2000).

    Article  Google Scholar 

  13. S. Molokov, I. Cox, and C. B. Reed, Fusion Technol. 39, 880 (2001).

    Google Scholar 

  14. K. V. Karelsky, V. V. Papkov, A. S. Petrosyan, and D. V. Tsygankov, Phys. Lett. A 271, 341 (2000).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. K. V. Karelsky and A. S. Petrosyan, Fluid Dyn. Res. 38, 339 (2006).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. V. Petviashvili and O. Pokhotelov, Solitary Waves in Plasmas and in the Atmosphere (Gordon and Breach, New York, 1992).

    MATH  Google Scholar 

  17. K. V. Karelsky, A. S. Petrosyan, and S. V. Tarasevich, J. Exp. Theor. Phys. 113(3), 530 (2011).

    Article  ADS  Google Scholar 

  18. T. S. Wood and M. E. McIntayre, J. Fluid Mech. 677, 445 (2011).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. K. V. Karelsky, A. S. Petrosyan, and A. G. Slavin, Russ. J. Numer. Anal. Math. Modell. 24, 229 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  20. P. A. Davidson, Magnetohydrodynamics (Springer-Verlag, New York, 2002).

    Book  MATH  Google Scholar 

  21. K. V. Karelsky, V. V. Papkov, and A. S. Petrosyan, Phys. Lett. A 271, 349 (2000).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1999).

    Book  MATH  Google Scholar 

  23. R. Courant and K. Friedrichs, Supersonic Flow and Shock Waves (Springer-Verlag, New York, 1999).

    Google Scholar 

  24. K. V. Karelsky, A. S. Petrosyan, and A. G. Slavin, Russ. J. Numer. Anal. Math. Modell. 21, 539 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  25. K. V. Karelsky, A. S. Petrosyan, and A. G. Slavin, Russ. J. Numer. Anal. Math. Modell. 22, 543 (2007).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Petrosyan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karelsky, K.V., Petrosyan, A.S. & Tarasevich, S.V. Nonlinear dynamics of magnetohydrodynamic flows of a heavy fluid on slope in the shallow water approximation. J. Exp. Theor. Phys. 119, 311–325 (2014). https://doi.org/10.1134/S1063776114070024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114070024

Keywords

Navigation