Skip to main content
Log in

On Higgs-extended MSSM models

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Motivated by the LHC results revealing the SM scalar sector as well as by its possible revision, we consider an MSSM scalar extension consisting of two Higgs triplets generating the observed neutrino and Higgs masses. The latter constrains their suppressed vevs and sizable couplings, which slightly influence the extended neutralino sector and the LSP emergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Quigg, Gauge Theories of the Strong, Weak, and Electromagnetic Interactions (Benjamin, New York, 1983).

    Google Scholar 

  2. T. P. Cheng and L. F. Li, Gauge Theories of Elementary Particle Physics (Oxford University Press, London, 1984).

    Google Scholar 

  3. G. Aad et al. [ATLAS Collab.], Phys. Lett. B 716, 1 (2012).

    Article  ADS  Google Scholar 

  4. S. Chatrchyan et al. [CMS Collab.], Phys. Lett. B 716, 30 (2012).

    Article  ADS  Google Scholar 

  5. U. Ellwanger, J. High Energy Phys. 1203, 044 (2012).

    Article  ADS  Google Scholar 

  6. T. Basak and S. Mohanty, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 86, 075031 (2012).

    Article  Google Scholar 

  7. A. Delgado, G. Nardini, and M. Quiros, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 86, 115010 (2012).

    Article  Google Scholar 

  8. J. Beringer et al. [Particle Data Group Collab.], Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 86, 01001 (2012).

    Google Scholar 

  9. S. E. Ennadifi, Phys. Part. Nucl. Lett. 10, 201 (2011).

    Article  Google Scholar 

  10. R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).

    Article  ADS  Google Scholar 

  11. B. Marcus, E. Joakim, G. Paolo, L. Erik, and S. Sjors, J. Cosmol. Astropart. Phys. 08, 035 (2009).

    Google Scholar 

  12. R. Enomoto, T. Yoshida, S. Yanagita, and C. Itoh, Astrophys. J. 596, 216 (2003).

    Article  ADS  Google Scholar 

  13. P. P. Giardino, K. Kannike, M. Raidal, and A. Strumia, J. High Energy Phys. 1206, 117 (2012).

    Article  ADS  Google Scholar 

  14. J. R. Espinosa, C. Grojean, M. Muhlleitner, and M. Trott, J. High Energy Phys. 1212, 045 (2012).

    Article  ADS  Google Scholar 

  15. S. P. Martin, Phys. Rev. D: Part. Fields 54, 2340 (1996).

    Article  ADS  Google Scholar 

  16. G. R. Farrar and P. Fayet, Phys. Lett. B 76, 575 (1978).

    Article  ADS  Google Scholar 

  17. S. E. Ennadifi and E. H. Saidi, J. Mod. Phys. 1, 393 (2010).

    Article  Google Scholar 

  18. H. Goldberg, Phys. Rev. Lett. 50, 1419 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. -E. Ennadifi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laamara, R.A., Ennadifi, S.E. & Loualidi, M.A. On Higgs-extended MSSM models. J. Exp. Theor. Phys. 119, 49–53 (2014). https://doi.org/10.1134/S1063776114060168

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114060168

Keywords

Navigation