Skip to main content
Log in

The Kohn-Luttinger effect and anomalous pairing in new superconducting systems and graphene

  • Review
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We present a review of theoretical investigations into the Kohn-Luttinger nonphonon superconductivity mechanism in various 3D and 2D repulsive electron systems described by the Fermi-gas, Hubbard, and Shubin-Vonsovsky models. Phase diagrams of the superconducting state are considered, including regions of anomalous s-, p-, and d-wave pairing. The possibility of a strong increase in the superconducting transition temperature T c even for a low electron density is demonstrated by analyzing the spin-polarized case or the two-band situation. The Kohn-Luttinger theory explains or predicts superconductivity in various materials such as heterostructures and semimetals, superlattices and dichalcogenides, high-T c superconductors and heavy-fermion systems, layered organic superconductors, and ultracold Fermi gases in magnetic traps. This theory also describes the anomalous electron transport and peculiar polaron effects in the normal state of these systems. The theory can be useful for explaining the origin of superconductivity and orbital currents (chiral anomaly) in systems with the Dirac spectrum of electrons, including superfluid 3He-A, doped graphene, and topological superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    MATH  MathSciNet  ADS  Google Scholar 

  2. P. W. Anderson, Science (Washington) 235, 1196 (1987).

    ADS  Google Scholar 

  3. D. Vollhardt and P. Woelfle, The Superfluid Phases of Helium 3 (Taylor and Francis, London, 1990).

    Google Scholar 

  4. G. E. Volovik, Exotic Properties of Superfluid 3 He (World Scientific, Singapore, 1992).

    Google Scholar 

  5. G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  6. C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Phys. Rev. Lett. 90, 053201 (2003).

    ADS  Google Scholar 

  7. C. H. Schunck, M. W. Zwierlein, C. A. Stan, S. M. F. Raupach, W. Ketterle, A. Simoni, E. Tiesinga, C. J. Williams, and P. S. Julienne, Phys. Rev. A: At., Mol., Opt. Phys. 71, 045601 (2005).

    ADS  Google Scholar 

  8. H. R. Ott, H. Rudigier, T. M. Rice, K. Ueda, Z. Fisk, and J. L. Smith, Phys. Rev. Lett. 52, 1915 (1984).

    ADS  Google Scholar 

  9. S. Kromer, R. Helfrich, M. Lang, F. Steglich, C. Langhammer, A. Bach, T. Michels, J. S. Kim, and G. R. Stewart, Phys. Rev. Lett. 81, 4476 (1998).

    ADS  Google Scholar 

  10. K. Kuroki, J. Phys. Soc. Jpn. 75, 051013 (2006).

    ADS  Google Scholar 

  11. Y. Maeno, T. M. Rice, and M. Sigrist, Phys. Today 54, 42 (2001); T. M. Rice and M. Sigrist, J. Phys.: Condens. Matter 7, L643 (1995).

    ADS  Google Scholar 

  12. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature (London) 410, 63 (2001).

    ADS  Google Scholar 

  13. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

    Google Scholar 

  14. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington) 306, 666 (2004).

    ADS  Google Scholar 

  15. M. Yu. Kagan, Phys.—Usp. 37(1), 69 (1994).

    ADS  Google Scholar 

  16. Yu. E. Lozovik, S. P. Merkulova, and A. A. Sokolik, Phys.—Usp. 51(7), 727 (2008).

    ADS  Google Scholar 

  17. V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H. Castro Neto, Rev. Mod. Phys. 84, 1067 (2012).

    ADS  Google Scholar 

  18. P. R. Wallace, Phys. Rev. 71, 622 (1947).

    MATH  ADS  Google Scholar 

  19. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    ADS  Google Scholar 

  20. W. Kohn and J. M. Luttinger, Phys. Rev. Lett. 15, 524 (1965).

    MathSciNet  ADS  Google Scholar 

  21. L. P. Gor’kov and T. K. Melik-Barkhudarov, Sov. Phys. JETP 13, 1018 (1961).

    MATH  Google Scholar 

  22. J. Friedel, Adv. Phys. 3, 446 (1954); J. Friedel, Nuovo Cimento, Suppl. 2, 287 (1958).

    ADS  Google Scholar 

  23. J. Lindhard and K. Dan, Vidensk. Selsk. Mat.-Fys. Medd. 28, 8 (1954).

    Google Scholar 

  24. N. Ashcroft and N. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976; Mir, Moscow, 1979), Vol. 1.

    Google Scholar 

  25. A. B. Migdal, Sov. Phys. JETP 7, 996 (1958).

    MathSciNet  Google Scholar 

  26. W. Kohn, Phys. Rev. Lett. 2, 393 (1959).

    ADS  Google Scholar 

  27. D. Fay and A. Layzer, Phys. Rev. Lett. 20, 187 (1968).

    ADS  Google Scholar 

  28. M. Yu. Kagan and A. V. Chubukov, JETP Lett. 47(10), 614 (1988).

    ADS  Google Scholar 

  29. M. A. Baranov, A. V. Chubukov, and M. Yu. Kagan, Int. J. Mod. Phys. B 6, 2471 (1992).

    ADS  Google Scholar 

  30. M. A. Baranov, M. Yu. Kagan, and Yu. Kagan, JETP Lett. 64(4), 301 (1996).

    ADS  Google Scholar 

  31. V. M. Galitskii, Sov. Phys. JETP 7, 104 (1958).

    MathSciNet  Google Scholar 

  32. M. Yu. Kagan and A. V. Chubukov, JETP Lett. 50(11), 517 (1989).

    ADS  Google Scholar 

  33. A. V. Chubukov, Phys. Rev. B: Condens. Matter 48, 1097 (1993).

    ADS  Google Scholar 

  34. D. V. Efremov, M. S. Mar’enko, M. A. Baranov, and M. Yu. Kagan, Physica B (Amsterdam) 284–288, 216 (2000).

    Google Scholar 

  35. P. Bloom, Phys. Rev. B: Solid State 12, 125 (1975).

    ADS  Google Scholar 

  36. A. M. Afanas’ev and Yu. Kagan, Sov. Phys. JETP 16, 1030 (1962).

    MATH  ADS  Google Scholar 

  37. D. V. Efremov, M. S. Mar’enko, M. A. Baranov, and M. Yu. Kagan, JETP 90(5), 861 (2000).

    ADS  Google Scholar 

  38. G.-H. Oh, Y. Ishimoto, T. Kawae, M. Nakagawa, O. Ishikawa, T. Hata, and T. Kodama, J. Low Temp. Phys. 95, 525 (1994).

    ADS  Google Scholar 

  39. M. Yu. Kagan, Phys. Lett. A 152, 303 (1991).

    ADS  Google Scholar 

  40. M. Yu. Kagan and V. V. Val’kov, J. Exp. Theor. Phys. 113(1), 156 (2011); M. Yu. Kagan and V. V. Val’kov, Low Temp. Phys. 37 (1), 69 (2011); G. Lanzarich, Lifetime in Magnetism and Superconductivity: A Tribute to Professor David Schoenberg (Cambridge Scientific, Cambridge, 2011).

    ADS  Google Scholar 

  41. M. Yu. Kagan, V. V. Val’kov, and P. Woelfle, Low Temp. Phys. 37(10), 834 (2011).

    ADS  Google Scholar 

  42. M. A. Baranov, M. Yu. Kagan, and M. S. Mar’enko, JETP Lett. 58(9), 709 (1993).

    ADS  Google Scholar 

  43. J. G. Bednorz and K. A. Müller, Z. Phys. B: Condens. Matter 64, 189 (1986).

    ADS  Google Scholar 

  44. J. C. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963).

    ADS  Google Scholar 

  45. Yu. A. Izyumov, M. I. Katsnel’son, and Yu. N. Skryabin, Magnetism of Itinerant Electrons (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  46. Yu. A. Izyumov, Phys.—Usp. 38(4), 385 (1995).

    ADS  Google Scholar 

  47. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    MathSciNet  ADS  Google Scholar 

  48. H. Tasaki, J. Phys.: Condens. Matter. 68, 4353 (1998).

    ADS  Google Scholar 

  49. S. G. Ovchinnikov and V. V. Val’kov, Hubbard Operators in the Theory of Strongly Correlated Electrons (Imperial College Press, London, 2004).

    MATH  Google Scholar 

  50. M. A. Baranov and M. Yu. Kagan, Z. Phys. B: Condens. Matter 86, 237 (1992).

    ADS  Google Scholar 

  51. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Volume 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989; Butterworth-Heinemann, Oxford, 1991).

    Google Scholar 

  52. D. J. Scalapino, E. Loh, Jr., and J. E. Hirsch, Phys. Rev. B: Condens. Matter 34, 8190 (1986); D. J. Scalapino, E. Loh, Jr., and J. E. Hirsch, Phys. Rev. B: Condens. Matter 35, 6694 (1987).

    ADS  Google Scholar 

  53. A. N. Kozlov, Sverkhprovodimost: Fiz., Khim., Tekh. 2, 64 (1989).

    Google Scholar 

  54. R. Hlubina, Phys. Rev. B: Condens. Matter 59, 9600 (1999); J. Mráz and R. Hlubina, Phys. Rev. B: Condens. Matter 67, 174518 (2003).

    ADS  Google Scholar 

  55. D. Zanchi and H. J. Schulz, Phys. Rev. B: Condens. Matter 54, 9509 (1996).

    ADS  Google Scholar 

  56. I. E. Dzyaloshinskii and V. M. Yakovenko, Sov. Phys. JETP 67(4), 844 (1988); I. E. Dzyaloshinskii, I. M. Krichever, and J. Chronek, Sov. Phys. JETP 67 (7), 1492 (1988).

    Google Scholar 

  57. A. T. Zheleznyak, V. M. Yakovenko, and I. E. Dzyaloshinskii, Phys. Rev. B: Condens. Matter 55, 3200 (1997).

    ADS  Google Scholar 

  58. S. Raghu, S. A. Kivelson, and D. J. Scalapino, Phys. Rev. B: Condens. Matter 81, 224505 (2010).

    ADS  Google Scholar 

  59. A. S. Alexandrov and V. V. Kabanov, Phys. Rev. Lett. 106, 136403 (2011).

    ADS  Google Scholar 

  60. S. Shubin and S. Vonsovsky, Proc. R. Soc. London, Ser. A 145, 159 (1934); S. Shubin and S. Vonsovsky, Phys. Z. Sowjetunion 7, 292 (1935); S. Shubin and S. Vonsovsky, Phys. Z. Sowjetunion 10, 348 (1936).

    ADS  Google Scholar 

  61. S. V. Vonsovsky and M. I. Katsnelson, J. Phys. C: Solid State Phys. 12, 2043 (1979); S. V. Vonsovsky and M. I. Katsnelson, J. Phys. C: Solid State Phys. 12, 2055 (1979).

    ADS  Google Scholar 

  62. R. O. Zaitsev, Sov. Phys. JETP 51(4), 671 (1980).

    Google Scholar 

  63. R. O. Zaitsev, V. A. Ivanov, and Yu. V. Mikhailova, Fiz. Met. Metalloved. 65, 1032 (1988); R. O. Zaitsev, V. A. Ivanov, and Yu. V. Mikhailova, Fiz. Met. Metalloved. 65, 1108 (1989).

    ADS  Google Scholar 

  64. R. O. Zaitsev, J. Exp. Theor. Phys. 98(4), 780 (2004).

    ADS  Google Scholar 

  65. V. V. Val’kov and M. M. Korovushkin, J. Exp. Theor. Phys. 112(1), 108 (2011).

    ADS  Google Scholar 

  66. M. Yu. Kagan, D. V. Efremov, M. S. Mar’enko, and V. V. Val’kov, JETP Lett. 93(12), 725 (2011).

    ADS  Google Scholar 

  67. S. Raghu, E. Berg, A. V. Chubukov, and S. A. Kivelson, Phys. Rev. B: Condens. Matter 85, 024516 (2012).

    ADS  Google Scholar 

  68. M. Yu. Kagan, V. V. Val’kov, V. A. Mitskan, and M. M. Korovushkin, JETP Lett. 97(4), 226 (2013); M. Yu. Kagan, V. V. Val’kov, V. A. Mitskan, and M. M. Korovushkin, J. Exp. Theor. Phys. 117 (4), 728 (2013).

    ADS  Google Scholar 

  69. K. Okazaki, Y. Ota, Y. Kotani, W. Malaeb, Y. Ishida, T. Shimojima, T. Kiss, S. Watanabe, C.-T. Chen, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, T. Saito, H. Fukazawa, Y. Kohori, K. Hashimoto, T. Shibauchi, Y. Matsuda, H. Ikeda, H. Miyahara, R. Arita, A. Chainani, and S. Shin, Science (Washington) 337, 1314 (2012).

    ADS  Google Scholar 

  70. M. Yu. Kagan and T. M. Rice, J. Phys.: Condens. Matter 6, 3771 (1994).

    ADS  Google Scholar 

  71. N. M. Plakida, JETP Lett. 74(1), 36 (2001); N. M. Plakida, L. Anton, S. Adam, and Gh. Adam, J. Exp. Theor. Phys. 97 (2), 331 (2003).

    ADS  Google Scholar 

  72. J. C. Hubbard, Proc. R. Soc. London, Ser. A 285, 542 (1965).

    MathSciNet  ADS  Google Scholar 

  73. R. O. Zaitsev, Sov. Phys. JETP 41(1), 100 (1975); R. O. Zaitsev, Sov. Phys. JETP 43 (3), 574 (1976).

    ADS  Google Scholar 

  74. M. Eremin, I. Eremin, and S. Varlamov, Phys. Rev. B: Condens. Matter 64, 214512 (2001).

    ADS  Google Scholar 

  75. M. V. Eremin, I. M. Shigapov, and I. M. Eremin, Eur. Phys. J. B 85, 131 (2012).

    ADS  Google Scholar 

  76. N. M. Plakida and V. S. Oudovenko, Eur. Phys. J. B 86, 115 (2013).

    ADS  Google Scholar 

  77. J. E. Hirsch, Phys. Lett. A 136, 153 (1989).

    ADS  Google Scholar 

  78. V. Yu. Yushankhai, G. M. Vujicic, and R. B. Zakula, Phys. Lett. A 151, 254 (1990).

    ADS  Google Scholar 

  79. V. V. Val’kov, T. A. Val’kova, D. M. Dzebisashvili, and S. G. Ovchinnikov, Mod. Phys. Lett. B 17, 441 (2003).

    ADS  Google Scholar 

  80. V. V. Val’kov and D. M. Dzebisashvili, J. Exp. Theor. Phys. 100(3), 608 (2005).

    ADS  Google Scholar 

  81. M. M. Korshunov, S. G. Ovchinnikov, and A. V. Sherman, JETP Lett. 80(1), 39 (2004).

    ADS  Google Scholar 

  82. V. V. Val’kov and A. A. Golovnya, J. Exp. Theor. Phys. 107(6), 996 (2008).

    ADS  Google Scholar 

  83. V. V. Val’kov, M. M. Korovushkin, and A. F. Barabanov, JETP Lett. 88(6), 370 (2008).

    ADS  Google Scholar 

  84. V. V. Val’kov, A. A. Shklyaev, M. M. Korovushkin, and A. F. Barabanov, Phys. Solid State 53(10), 1997 (2011).

    ADS  Google Scholar 

  85. M. S. Mar’enko, J. D. Sau, and S. Tewari, arXiv:1202.5784v1.

  86. H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen, and A. F. Morpurgo, Nature (London) 446, 56 (2007).

    ADS  Google Scholar 

  87. N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B: Condens. Matter 72, 174406 (2005).

    ADS  Google Scholar 

  88. E. C. Marino and L. H. C. M. Nunes, Nucl. Phys. B 741, 404 (2006).

    MATH  MathSciNet  ADS  Google Scholar 

  89. J. González, F. Guinea, and M. A. H. Vozmediano, Phys. Rev. B: Condens. Matter 63, 134421 (2001).

    ADS  Google Scholar 

  90. B. Uchoa and A. H. Castro Neto, Phys. Rev. Lett. 98, 146801 (2007).

    ADS  Google Scholar 

  91. A. M. Black-Schaffer and S. Doniach, Phys. Rev. B: Condens. Matter 75, 134512 (2007).

    ADS  Google Scholar 

  92. C. Honerkamp, Phys. Rev. Lett. 100, 146404 (2008).

    ADS  Google Scholar 

  93. M. L. Kiesel, C. Platt, W. Hanke, D. A. Abanin, and R. Thomale, Phys. Rev. B: Condens. Matter 86, 020507(R) (2012).

    ADS  Google Scholar 

  94. J. González, Phys. Rev. B: Condens. Matter 78, 205431 (2008).

    ADS  Google Scholar 

  95. R. S. Markiewicz, J. Phys. Chem. Solids 58, 1179 (1997).

    ADS  Google Scholar 

  96. B. Valenzuela and M. A. H. Vozmediano, New J. Phys. 10, 113009 (2008).

    ADS  Google Scholar 

  97. R. Nandkishore, L. S. Levitov, and A. V. Chubukov, Nat. Phys. 8, 158 (2012).

    Google Scholar 

  98. R. Nandkishore, G.-W. Chern, and A. V. Chubukov, Phys. Rev. Lett. 108, 227204 (2012).

    ADS  Google Scholar 

  99. R. Nandkishore and A. V. Chubukov, Phys. Rev. B: Condens. Matter 86, 115426 (2012).

    ADS  Google Scholar 

  100. M. Yu. Kagan, V. V. Val’kov, V. A. Mitskan, and M. M. Korovushkin, Solid State Commun. 118, 61 (2014).

    ADS  Google Scholar 

  101. T. O. Wehling, E. Şaşoğlu, C. Friedrich, A. I. Lichtenstein, M. I. Katsnelson, and S. Blugel, Phys. Rev. Lett. 106, 236805 (2011).

    ADS  Google Scholar 

  102. R. O. Zaitsev, JETP Lett. 94(3), 206 (2011); R. O. Zaitsev, JETP Lett. 95 (7), 380 (2012).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Kagan.

Additional information

Original Russian Text © M.Yu. Kagan, V.V. Val’kov, V.A. Mitskan, M.M. Korovushkin, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 145, No. 6, pp. 1127–1146.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kagan, M.Y., Val’kov, V.V., Mitskan, V.A. et al. The Kohn-Luttinger effect and anomalous pairing in new superconducting systems and graphene. J. Exp. Theor. Phys. 118, 995–1011 (2014). https://doi.org/10.1134/S1063776114060132

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114060132

Keywords

Navigation