Skip to main content
Log in

The varied nonlinear interface waves in a scale-limited two-medium oscillatory system

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate spontaneously generated waves around the interfaces between two different media in a system where the domain scales are limited. These two media are carefully selected so that there exists a theoretical interface wave with the frequency and wave number that can be predicted according to the control parameters. We present the rules of how the frequency and wave number vary with reducing the scales of media domains. We find that the frequency decreases with reducing the scale of antiwave (AW) media, but increases with reducing the scale of normal wave (NW) media in both one-dimensional and two-dimensional systems. The wave number always decreases with reducing scales of either NW or AW media. The least scale to generate the theoretical wave is the predicted wavelength. These special phenomena around the interfaces can be applied to detect the limited scale of a system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).

    Article  ADS  Google Scholar 

  2. D. Donskoy, A. Sutin, and A. Ekimov, NDT E Int. 34, 231 (2001).

    Article  Google Scholar 

  3. C. Pecorari, J. Acoust. Soc. Am. 113, 3065 (2003).

    Article  ADS  Google Scholar 

  4. V. F. Nesterenko, C. Daraio, E. B. Herbold, and S. Jin, Phys. Rev. Lett. 95, 158702 (2005).

    Article  ADS  Google Scholar 

  5. Jun Zhu, Weiqiu Chen, and Guiru Ye, Ultrasonics 52, 125 (2012).

    Article  Google Scholar 

  6. D. V. Kulagin, G. G. Levchenko, A. S. Savchenko, A. S. Tarasenko, S. V. Tarasenko, and V. G. Shavrov, J. Exp. Theor. Phys. JETP 114(3), 474 (2012).

    Article  ADS  Google Scholar 

  7. R. Kumar and V. Chawla, Int. Commun. Heat Mass Transfer 48, 53 (2013).

    Article  Google Scholar 

  8. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Nature (London) 423, 604 (2003).

    Article  ADS  Google Scholar 

  9. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 32, 53 (2007).

    Article  ADS  Google Scholar 

  10. V. K. Vanag and I. R. Epstein, Int. J. Dev. Biol. 53, 673 (2009).

    Article  Google Scholar 

  11. Xujin Yuan, Hongli Wang, and Qi Ouyang, Phys. Rev. Lett. 106, 188303 (2011).

    Article  ADS  Google Scholar 

  12. A. V. Amirkhizi and S. Nemat-Nasser, Theor. Appl. Mech. 38, 299 (2011).

    Article  ADS  MATH  Google Scholar 

  13. Z. Cao, P. Li, H. Zhang, and G. Hu, Int. J. Mod. Phys. B 21, 4170 (2007).

    Article  ADS  MATH  Google Scholar 

  14. X. Huang, X. Liao, X. Cui, H. Zhang, and G. Hu, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 80, 036211 (2009).

    Article  ADS  Google Scholar 

  15. X. Cui, X. Huang, Z. Cao, H. Zhang, and G. Hu, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 78, 026202 (2008).

    Article  ADS  Google Scholar 

  16. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer-Verlag, Berlin, 1984).

    Book  MATH  Google Scholar 

  17. M. Ipsen, L. Kramer, and P. G. Sorensen, Phys. Rep. 337, 193 (2000).

    Article  ADS  MATH  Google Scholar 

  18. I. S. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99 (2002).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. V. García-Morales and K. Krischer, Contemp. Phys. 53(2), 79 (2012).

    Article  ADS  Google Scholar 

  20. X. Huang, X. Cui, X. Liao, and G. Hu, Europhys. Lett. 95, 24001 (2011).

    Article  ADS  Google Scholar 

  21. H. Nagashima, J. Phys. Soc. Jpn. 60, 2797 (1991).

    Article  ADS  Google Scholar 

  22. M. Stich and A. S. Mikhailov, Physica D (Amsterdam) 215, 38 (2006).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. R. Manor, A. Hagberg, and E. Meron, New J. Phys. 11, 063016 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Q. Huang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X.Q., Cui, X.H. & Huang, J.Y. The varied nonlinear interface waves in a scale-limited two-medium oscillatory system. J. Exp. Theor. Phys. 119, 162–168 (2014). https://doi.org/10.1134/S1063776114060120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114060120

Keywords

Navigation