Skip to main content
Log in

Inelastic tunnel transport of electrons through an anisotropic magnetic structure in an external magnetic field

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum transport of electrons through a magnetic impurity located in an external magnetic field and affected by a substrate is considered using the Keldysh diagram technique for the Fermi and Hubbard operators. It is shown that in a strongly nonequilibrium state induced by multiple reflections of electrons from the impurity, the current-voltage (I–V) characteristic of the system contains segments with a negative conductivity. This effect can be controlled by varying the anisotropy parameter of the impurity center as well as the parameters of coupling between the magnetic impurity and metal contacts. The application of the magnetic field is accompanied by an increase in the number of Coulomb steps in the I–V curve of the impurity. The effect of appreciable magnetoresistance appears in this case. We demonstrate the possibility of switching between magnetic impurity states with different total spin projection values in the regime of asymmetric coupling of this impurity with the contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Vdovichev, B. A. Gribkov, S. A. Gusev, A. Yu. Klimov, V. L. Mironov, I. M. Nefedov, V. V. Rogov, A. A. Fraerman, and I. A. Shereshevskii, JETP Lett. 94(5), 386 (2011).

    Article  ADS  Google Scholar 

  2. I. V. Rozhansky, N. S. Averkiev, and E. Lahderanta, Phys. Rev. B: Condens. Matter 85, 075315 (2012).

    Article  ADS  Google Scholar 

  3. Y. Makhlin, G. Schon, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).

    Article  ADS  Google Scholar 

  4. V. F. Gantmakher and V. T. Dolgopolov, Phys.—Usp. 53(1), 1 (2010).

    ADS  Google Scholar 

  5. A. K. Feofanov, V. A. Oboznov, V. V. Bol’ginov, J. Lisenfeld, S. Poletto, V. V. Ryazanov, A. N. Rossolenko, M. Khabipov, D. Balashov, A. B. Zorin, P. N. Dmitriev, V. P. Koshelets, and A. V. Ustinov, Nat. Phys. 6, 593 (2010).

    Article  Google Scholar 

  6. J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruña, P. L. McEuen, and D. C. Ralph, Nature (London) 417, 722 (2002).

    Article  ADS  Google Scholar 

  7. A. J. Heinrich, J. A. Gupta, and C. P. Lutz, Science (Washington) 306, 466 (2004).

    Article  ADS  Google Scholar 

  8. L. Besombes, Y. Leger, L. Maingault, D. Ferrand, H. Mariette, and J. Cibert, Phys. Rev. Lett. 93, 207403 (2004); L. Besombes, Y. Leger, L. Maingault, D. Ferrand, H. Mariette, and J. Cibert, Phys. Rev. B 71, 161307 (2005).

    Article  ADS  Google Scholar 

  9. C. F. Hirjibehedin, C. P. Lutz, and A. J. Heinrich, Science (Washington) 312, 1021 (2006).

    Article  ADS  Google Scholar 

  10. S. Loth, K. von Bergmann, M. Ternes, A. F. Otte, C. P. Lutz, and A. J. Heinrich, Nat. Phys. 6, 340 (2010).

    Article  Google Scholar 

  11. S. Loth, S. Baumann, C. P. Lutz, D. M. Eigler, and A. J. Heinrich, Science (Washington) 335, 196 (2012).

    Article  ADS  Google Scholar 

  12. K. Kikoin, and Y. Avishai, Phys. Rev. Lett. 86, 2090 (2001).

    Article  ADS  Google Scholar 

  13. P. I. Arseyev, N. S. Maslova, and V. N. Mantsevich, JETP Lett. 94(5), 390 (2011).

    Article  ADS  Google Scholar 

  14. H. Ueba, T. Mii, and S. G. Tikhodeev, Surf. Sci. 601, 5220 (2007).

    Article  ADS  Google Scholar 

  15. P. I. Arseev and N. S. Maslova, Phys.—Usp. 53(11), 1151 (2010).

    Article  ADS  Google Scholar 

  16. N. Tsukahara, K.-I. Noto, M. Ohara, S. Shiraki, N. Takagi, Y. Takata, J. Miyawaki, M. Taguchi, A. Chainani, S. Shin, and M. Kawai, Phys. Rev. Lett. 102, 167203 (2009).

    Article  ADS  Google Scholar 

  17. A. F. Otte, M. Ternes, K. von Bergmann, S. Loth, H. Brune, C. P. Lutz, C. F. Hirjibehedin, and A. J. Heinrich, Nat. Phys. 4, 847 (2008).

    Article  Google Scholar 

  18. V. V. Val’kov, S. V. Aksenov, and E. A. Ulanov, JETP Lett. 98(7), 403 (2013).

    Article  ADS  Google Scholar 

  19. R. O. Zaitsev, Sov. Phys. JETP 41(1), 100 (1975).

    ADS  Google Scholar 

  20. R. O. Zaitsev, Sov. Phys. JETP 43(3), 574 (1976).

    ADS  Google Scholar 

  21. L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1964).

    MathSciNet  Google Scholar 

  22. R. O. Zaitsev, Introduction to the Modern Kinetic Theory: A Series of Lectures (KomKniga, Moscow, 2007; URSS, Moscow, 2014).

    Google Scholar 

  23. J. Fransson, O. Eriksson, and I. Sandalov, Phys. Rev. Lett. 88, 226601 (2002).

    Article  ADS  Google Scholar 

  24. V. V. Val’kov and S. V. Aksenov, J. Exp. Theor. Phys. 113(2), 266 (2011); V. V. Val’kov, S. V. Aksenov, and E. A. Ulanov, J. Exp. Theor. Phys. 116 (5), 854 (2013).

    Article  ADS  Google Scholar 

  25. V. V. Val’kov and D. M. Dzebisashvili, J. Exp. Theor. Phys. 107(4), 679 (2008).

    Article  ADS  Google Scholar 

  26. V. V. Val’kov and T. A. Val’kova, Sov. J. Low Temp. Phys. 11(9), 524 (1985).

    Google Scholar 

  27. S. G. Tikhodeev and H. Ueba, in Problems of Condensed Matter Physics, Ed. by A. L. Ivanov and S. G. Tikhodeev (Clarendon, Oxford, 2008).

  28. H. B. Heersche, Z. de Groot, J. A. Folk, H. S. J. van der Zant, C. Romeike, M. R. Wegewijs, L. Zobbi, D. Barreca, E. Tondello, and A. Cornia, Phys. Rev. Lett. 96, 206801 (2006).

    Article  ADS  Google Scholar 

  29. M.-H. Jo, J. E. Grose, K. Baheti, M. Deshmukh, J. J. Sokol, E. M. Rumberger, D. N. Hendrickson, J. R. Long, H. Park, and D. C. Ralph, Nano Lett. 6, 2014 (2006).

    Article  ADS  Google Scholar 

  30. J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, Phys. Rev. B: Condens. Matter 62, 2188 (2000).

    Article  ADS  Google Scholar 

  31. I. G. Zacharia, D. Goldhaber-Gordon, G. Granger, M. A. Kastner, Yu. B. Khavin, H. Shtrikman, D. Mahalu, and U. Meirav, Phys. Rev. B: Condens. Matter 64, 155311 (2001).

    Article  ADS  Google Scholar 

  32. C. F. Hirjibehedin, C.-Y. Lin, A. F. Otte, M. Ternes, C. P. Lutz, B. A. Jones, and A. J. Heinrich, Science (Washington) 317, 1199 (2007).

    Article  ADS  Google Scholar 

  33. K. Park, and M. R. Pederson, Phys. Rev. B: Condens. Matter 70, 054414 (2004).

    Article  ADS  Google Scholar 

  34. F. Qu and P. Hawrylak, Phys. Rev. Lett. 95, 217206 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Val’kov.

Additional information

Original Russian Text © V.V. Val’kov, S.V. Aksenov, E.A. Ulanov, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 146, No. 1, pp. 144–159.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Val’kov, V.V., Aksenov, S.V. & Ulanov, E.A. Inelastic tunnel transport of electrons through an anisotropic magnetic structure in an external magnetic field. J. Exp. Theor. Phys. 119, 124–137 (2014). https://doi.org/10.1134/S1063776114060065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114060065

Keywords

Navigation