Skip to main content
Log in

Fractals of graphene quantum dots in photoluminescence of shungite

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Viewing shungite as loosely packed fractal nets of graphene-based (reduced graphene oxide, rGO) quantum dots (GQDs), we consider photoluminescence of the latter as a convincing proof of the structural concept as well as of the GQD attribution to individual rGO fragments. We study emission from shungite GQDs for colloidal dispersions in water, carbon tetrachloride, and toluene at both room and low temperatures. As expected, the photoluminescence of the GQD aqueous dispersions is quite similar to that of synthetic GQDs of the rGO origin. The morphological study of shungite dispersions shows a steady trend of GQDs to form fractals and to drastically change the colloid fractal structure caused by the solvent exchange. Spectral study reveals a dual character of the emitting centers: individual GQDs are responsible for the spectra position while the fractal structure of GQD colloids ensures high broadening of the spectra due to structural inhomogeneity, thus causing a peculiar dependence of the photoluminescence spectra on the excitation wavelength. For the first time, photoluminescence spectra of individual GQDs were observed in frozen toluene dispersions, which paves the way for a theoretical treatment of the GQD photonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, Nat. Phys. 3, 192 (2007).

    Article  Google Scholar 

  2. A. Güçłü, P. Potasz, and P. Hawrylak, Phys. Rev. B: Condens. Matter 84, 035425 (2011).

    Article  ADS  Google Scholar 

  3. K. A. Ritter and J. W. Lyding, Nat. Mater. 8, 235 (2009).

    Article  ADS  Google Scholar 

  4. D. Pan, J. Zhang, Z. Li, and M. Wu, Adv. Mater. (Weiheim) 22, 734 (2010).

    Article  Google Scholar 

  5. J. Shen, Y. Zhu, C. Chen, and C. Li, Chem. Commun. (Cambridge) 47, 2580 (2011).

    Article  Google Scholar 

  6. Z. Z. Zhang and K. Chang, Phys. Rev. B: Condens. Matter 77, 235411 (2008).

    Article  ADS  Google Scholar 

  7. V. Gupta, N. Chaudhary, R. Srivastava, G. D. Sharma, R. Bhardwaj, and S. Chand, J. Am. Chem. Soc. 133, 9960 (2011).

    Article  Google Scholar 

  8. R. Liu, D. Wu, X. Feng, and K. Müllen, J. Am. Chem. Soc. 133, 15221 (2011).

    Article  Google Scholar 

  9. Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, and L. Qu, Adv. Mater. (Weinheim) 23, 776 (2011).

    Article  Google Scholar 

  10. X. T. Zheng, A. Than, A. Ananthanaraya, D. H. Kim, and P. Chen, ACS Nano 7, 6278 (2013).

    Article  Google Scholar 

  11. L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, J. Hao, and S. P. Lau, ACS Nano 6, 5102 (2012).

    Article  Google Scholar 

  12. L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, and J.-J. Zhu, Nanoscale 5, 4015 (2013).

    Article  ADS  Google Scholar 

  13. X. Zhou, Y. Zhang, C. Wang, X. Wu, Y. Yang, B. Zheng, H. Wu, S. Guo, and J. Zhang, ACS Nano 6, 6592 (2012).

    Article  Google Scholar 

  14. Y. Dong, C. Chen, X. Zheng, L. Gao, Z. Cui, H. Yang, C. Guo, Y. Chi, and C. M. Li, J. Mater. Chem. 22, 8764 (2012).

    Article  Google Scholar 

  15. M. Zhang, L. Bai, W. Shang, W. Xie, H. Ma, Y. Fu, D. Fang, H. Sun, L. Fan, M. Han, C. Liub, and S. Yang, J. Mater. Chem. 22, 7461 (2012).

    Article  Google Scholar 

  16. L. Lin and S. Zhang, Chem. Commun. 48, 10177 (2012).

    Article  Google Scholar 

  17. S. Chen, J.-W. Liu, M. L. Chen, X. W. Chen, and J. H. Wang, Chem. Commun. (Cambridge) 48, 7637 (2012).

    Article  Google Scholar 

  18. B. S. Razbirin, E. F. Sheka, A. N. Starukhin, D. K. Nelson, P. A. Troshin, and R. N. Lyubovskaya JETP Lett. 87(3), 133 (2008).

    Article  ADS  Google Scholar 

  19. E. F. Sheka, B. S. Razbirin, A. N. Starukhin, D. K. Nelson, M. Yu. Degunov, R. N. Lyubovskaya, and P. A. Troshin J. Exp. Theor. Phys. 108(5), 738 (2009).

    Article  ADS  Google Scholar 

  20. B. S. Razbirin, E. F. Sheka, A. N. Starukhin, D. K. Nel’son, M. Yu. Degunov, P. A. Troshin, and R. N. Lyubovskaya, Phys. Solid State 51(6), 1315 (2009).

    Article  ADS  Google Scholar 

  21. E. F. Sheka, B. S. Razbirin, R. N. Lyubovskaya, P. A. Troshin, A, N. Starukhin, D. K. Nelson, and M. Y. Degunov, J. Nanophotonics 3, 033501 (2009).

    Article  Google Scholar 

  22. E. F. Sheka and N. N. Rozhkova, Int. J. Smart Nano Math. 5 (2004), DOI: 10.1080/19475411

  23. B. S. Razbirin, N. N. Rozhkova, E. F. Sheka, D. K. Nelson, and A. N. Starukhin, in Proceedings of the Eleventh International Conference “Advanced Carbon Nanostructures” ACNS’2013, St. Petersburg, Russia, July 1–5, 2013 (St. Petersburg, 2013), p. 69.

    Google Scholar 

  24. T. A. Witten, in Soft Matter Physics, Ed. by M. Daoud and C. E. Williams (Springer-Verlag, Berlin, 1999), p. 261.

    Google Scholar 

  25. J.-F. Gouyet, Physics and Fractal Structures (Springer-Verlag, Paris, 1996).

    MATH  Google Scholar 

  26. S. Park, J. An, I. Jung, R. D. Piner, S. J. An, X. Li, A. Velamakanni, and R. S. Ruoff, Nano Lett. 9, 1593 (2009).

    Article  ADS  Google Scholar 

  27. C. E. Hamilton, J. R. Lomeda, Z. Sun, J. M. Tour, and A. R. Barron, Nano Lett. 9, 3460 (2009).

    Article  ADS  Google Scholar 

  28. N. N. Rozhkova, G. I. Emel’yanova, L. E. Gorlenko, A. V. Gribanov, and V. V. Lunin, Glass Phys. Chem. 37(6), 613 (2011).

    Article  Google Scholar 

  29. E. V. Shpol’skii, Sov. Phys.—Usp. 3(3), 372 (1960).

    Article  ADS  Google Scholar 

  30. N. N. Rozhkova, Shungite Nanocarbon (Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, 2011).

    Google Scholar 

  31. J. P. Heritage and A. M. Glass, in Surface Enhanced Raman Scattering, Ed. by R. K. Chang and T. E. Furtak (Plenum, New York, 1982), p. 391.

    Google Scholar 

  32. E. F. Sheka, Nanosci. Nanothechnol. Lett. 3, 28 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Sheka.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razbirin, B.S., Rozhkova, N.N., Sheka, E.F. et al. Fractals of graphene quantum dots in photoluminescence of shungite. J. Exp. Theor. Phys. 118, 735–746 (2014). https://doi.org/10.1134/S1063776114050161

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114050161

Keywords

Navigation