Skip to main content
Log in

Structure of Ti N (N = 6–15) titanium cluster isomers

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The atomic structures of various isomers of free Ti N (N = 6–15) titanium clusters have been studied by molecular dynamics using the many-body interaction potential in the tight binding model. The following parameters of the cluster structure have been calculated: average bond length and energy, coordination number, and frequencies (probabilities) of their appearance. An increase in the cluster size N is accompanied by increased values of these parameters. It is established that the frequency of appearance of an isomer with a given N value increases with the bond energy. The most probable structures of clusters with N = 10–15 correspond to maximum values of the atomic structure parameters among all isomers of a given size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. N. Makarov, Phys.—Usp. 49(2), 117 (2006).

    Article  ADS  Google Scholar 

  2. B. M. Smirnov, Phys.—Usp. 54(7), 691 (2011).

    Article  ADS  Google Scholar 

  3. O. A. Belyakova and Yu. L. Slovokhotov, Izv. Akad. Nauk, Ser. Khim., No. 11, 2175 (2003).

    Google Scholar 

  4. V. L. Ginzburg, Phys.—Usp. 50(4), 354 (2007).

    Article  Google Scholar 

  5. L. M. Russon, S. A. Heldecke, M. K. Birke, J. Conceicao, M. D. Morse, and P. B. Armentrout, J. Chem. Phys. 100, 4747 (1994).

    Article  ADS  Google Scholar 

  6. S.-R. Liu, H.-J. Zhai, M. Castro, and L. S. Wang, J. Chem. Phys. 118, 2108 (2003).

    Article  ADS  Google Scholar 

  7. M. Sakurai, K. Watanabe, K. Sumiyama, and K. Suzuki, J. Chem. Phys. 111, 235 (1999).

    Article  ADS  Google Scholar 

  8. E. A. Mikhailov and A. T. Kosilov, Phys. Solid State 52(2), 426 (2010).

    Article  ADS  Google Scholar 

  9. S. L. Gafner, L. V. Redel, and Yu. Ya. Gafner, J. Exp. Theor. Phys. 108(5), 784 (2009).

    Article  ADS  Google Scholar 

  10. S. D. Borisova, G. G. Rusina, and E. V. Chulkov, Phys. Solid State 52(4), 838 (2010).

    Article  Google Scholar 

  11. P.-H. Tang, T.-M. Wu, P. J. Hsu, and S. K. Lai, J. Chem. Phys. 137, 244304 (2012).

    Article  ADS  Google Scholar 

  12. S. YA. Betsofen, L. M. Petrov, A. A. Il’in, I. O. Bannykh, and A. N. Lutsenko, Poverkhnost, No. 1, 39 (2004).

    Google Scholar 

  13. A. D. Pogrebnyak, A. P. Shpak, N. A. Azarenkov, and V. M. Beresnev, Phys.—Usp. 52(1), 29 (2009).

    Article  ADS  Google Scholar 

  14. M. Doverstal, L. Karlsson, B. Lindgren, and U. Sassenberg, Chem. Phys. Lett. 270, 273 (1997).

    Article  ADS  Google Scholar 

  15. C. W. Bauschlicher, H. Partridge, S. R. Langhoff, and M. Rosi, J. Chem. Phys. 95, 1057 (1991).

    Article  ADS  Google Scholar 

  16. V. S. Demidenko, N. L. Zaitsev, and T. V. Men’shchikova, Phys. Solid State 49(11), 2210 (2007).

    Article  ADS  Google Scholar 

  17. A. N. Kravtsova, A. A. Guda, V. L. Mazalova, A. V. Soldatov, and R. L. Jonston, Nanostruktury 4, 15 (2011).

    Google Scholar 

  18. J. Zhao, Q. Qiu, B. Wang, and G. Wang, Solid State Commun. 118, 157 (2001).

    Article  ADS  Google Scholar 

  19. S. H. Wei, Z. Zeng, J. Q. You, and X. G. Gong, J. Chem. Phys. 113, 11127 (2000).

    Article  ADS  Google Scholar 

  20. G. L. Gutsev, M. D. Mochena, P. Jena, C. W. Bauschlicher, Jr., and H. Partridge, J. Chem. Phys. 121, 6785 (2004).

    Article  ADS  Google Scholar 

  21. A. Kalemos and A. Mavridis, J. Chem. Phys. 135, 134302 (2011).

    Article  ADS  Google Scholar 

  22. M. Castro, S.-R. Liu, H.-J. Zhai, and L.-S. Wang, J. Chem. Phys. 118, 2116 (2003).

    Article  ADS  Google Scholar 

  23. S. P. Waich and C. W. Bauschlisher, J. Chem. Phys. 83, 5735 (1985).

    Article  ADS  Google Scholar 

  24. B. N. Papas and H. F. Schaefer, J. Chem. Phys. 123, 074321 (2005).

    Article  ADS  Google Scholar 

  25. I. V. Bazhin, O. A. Leshcheva, and I. Ya. Nikiforov, Phys. Solid State 48(4), 774 (2006).

    Article  ADS  Google Scholar 

  26. S.-Y. Wang, J.-Z. Yu, H. Mizuseki, J. A. Yan, Y. Kawazoe, and C. Y. Wang, J. Chem. Phys. 120, 8463 (2004).

    Article  ADS  Google Scholar 

  27. B. Lee and G. W. Lee, J. Chem. Phys. 127, 164316 (2007).

    Article  ADS  Google Scholar 

  28. A. Sebetci and Z. B. Guvenc, Surf. Sci. 66, 525 (2003).

    Google Scholar 

  29. M. Boyukata and Z. B. Guvenc, Braz. J. Phys. 36, 720 (2006).

    Article  ADS  Google Scholar 

  30. V. Cerowski, B. K. Rao, S. N. Khanna, P. Jena, S. Ishii, K. Ohno, and Y. Kawazoe, J. Chem. Phys. 123, 074329 (2005).

    Article  ADS  Google Scholar 

  31. V. I. Matveev and S. A. Kochkin, J. Exp. Theor. Phys. 110(4), 722 (2010).

    Article  ADS  Google Scholar 

  32. R. S. Berry and B. M. Smirnov, Phys.—Usp. 48(4), 323 (2005).

    Article  Google Scholar 

  33. W. G. Hoover, Phys. Rev. A: At., Mol., Opt. Phys. 31, 1695 (1985).

    Article  ADS  Google Scholar 

  34. L. Verlet, Phys. Rev. 159, 98 (1967).

    Article  ADS  Google Scholar 

  35. F. Cleri and V. Rosato, Phys. Rev. B: Condens. Matter 48, 22 (1993).

    Article  ADS  Google Scholar 

  36. K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics: An Introduction (Springer-Verlag, Berlin, 1988; Nauka, Moscow, 1995).

    Book  MATH  Google Scholar 

  37. P. J. Feibelman, J. S. Nelson, and G. L. Kellogg, Phys. Rev. B: Condens. Matter 49, 10548 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Pan’kin.

Additional information

Original Russian Text © N.A. Pan’kin, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 145, No. 6, pp. 976–983.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan’kin, N.A. Structure of Ti N (N = 6–15) titanium cluster isomers. J. Exp. Theor. Phys. 118, 856–862 (2014). https://doi.org/10.1134/S106377611405015X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611405015X

Keywords

Navigation