Skip to main content
Log in

Energy spectrum and optical absorption spectra of carbon nanotubes with chiralities of (10, 10), (11, 9), and (12, 8)

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The energy spectra of single-wall carbon nanotubes (CNTs) with chiralities of (10, 10), (11, 9), and (12, 8) are calculated in the static fluctuation approximation for the Hubbard model. The choice of these systems for investigation was dictated by the fact that these systems are the most typical of heterogeneous samples obtained by synthesis. It is shown that in the chosen model and approximation, the type of conduction is independent of chirality, which contradicts the generally accepted opinion concerning the critical dependence of the CNT conduction current on the chirality indices. The optical absorption spectra of the CNTs under investigation are calculated using the resultant energy spectra. The shape of the optical absorption spectrum averaged over the known weight composition is in good agreement with experimental data. The results of investigation suggest that the rule according to which CNTs exhibit metal-type conductivity when the difference in the chirality indices is a multiple of three; otherwise, they have the semiconductor-type conductivity, is in all probability not general, but has applicability limits that can be established by rigorous calculations based on the Hubbard model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Levin, Solid-State Quantum Chemistry (Khimiya, Moscow, 1974; McGraw-Hill, New York, 1977).

    Google Scholar 

  2. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B: Condens. Matter 46, 1804 (1992).

    Article  ADS  Google Scholar 

  3. M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon 33, 883 (1992).

    Article  Google Scholar 

  4. N. Hamad, S. Sawada, and A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).

    Article  ADS  Google Scholar 

  5. P. R. Wallace, Phys. Rev. 71, 622 (1947).

    Article  MATH  ADS  Google Scholar 

  6. J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963).

    Article  ADS  Google Scholar 

  7. T. O. Wehling, E. Sasioglu, C. Friedrich, A. I. Lichtenstein, M. I. Katsnelson, and S. Blugel, Phys. Rev. Lett. 106, 236805 (2011).

    Article  ADS  Google Scholar 

  8. A. V. Eletskii, Phys.—Usp. 52(3), 209 (2009).

    Article  ADS  Google Scholar 

  9. Min Ouyang, Jin-Lin Huang, Chin Li Cheung, and C. M. Lieber, Science (Washington) 292, 702 (2001).

    Article  ADS  Google Scholar 

  10. J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature (London) 391, 59 (1998).

    Article  ADS  Google Scholar 

  11. Yu. A. Izyumov and V. I. Sadovskii, Electronic Structure of Strongly Correlated Compounds (Regular and Chaotic Dynamics, Izhevsk, Russia, 2009) [in Russian].

    Google Scholar 

  12. R. O. Zaitsev, Diagrammatic Method in the Theory of Superconductivity and Ferromagnetism (Editorial URSS, Moscow, 2004), p. 175.

    Google Scholar 

  13. R. O. Zaitsev, JETP Lett. 94(3), 206 (2011).

    Article  ADS  Google Scholar 

  14. V. A. Loskutov, G. I. Mironov, and R. R. Nigmatullin, Low Temp. Phys. 22(3), 220 (1997).

    ADS  Google Scholar 

  15. G. I. Mironov, Phys. Solid State 41(6), 864 (1999).

    Article  ADS  Google Scholar 

  16. R. R. Nigmatullin, A. A. Khamzin, and I. I. Popov, J. Exp. Theor. Phys. 114(2), 314 (2012).

    Article  ADS  Google Scholar 

  17. G. I. Mironov and A. I. Murzashev, Phys. Solid State 53(11), 2393 (2011).

    Article  ADS  Google Scholar 

  18. A. I. Murzashev, Russ. Phys. J. 55(5), 524 (2012).

    Article  Google Scholar 

  19. B. V. Lobanov and A. I. Murzashev, Phys. Solid State 55(4), 868 (2013).

    Article  ADS  Google Scholar 

  20. A. I. Murzashev and E. O. Shadrin, Phys. Solid State 55(1), 205 (2013).

    Article  ADS  Google Scholar 

  21. A. I. Murzashev and E. O. Shadrin, Russ. Phys. J. 56(7), 793 (2013).

    Article  Google Scholar 

  22. J. M. Cowley, P. Nikolaev, A. Thess, and R. E. Smalley, Chem. Phys. Lett. 265, 379 (1997).

    Article  ADS  Google Scholar 

  23. S. V. Tyablikov, Methods in the Quantum Theory of Magnetism (Nauka, Moscow, 1975; Springer-Verlag, New York, 1995).

    Google Scholar 

  24. T. E. Arutyunova, G. I. Mironov, and A. I. Murzashev, Phys. Solid State 54(9), 1917 (2012).

    Article  ADS  Google Scholar 

  25. H. Kataura, Y. Kumazawa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, Synth. Met. 103, 2555 (1999).

    Article  Google Scholar 

  26. Seok Ho Jeong, Ki Kang Kima, Seok Jin Jeong, Kay Hyeok Ana, Seung Hee Lee, and Young Hee Lee, Synth. Met. 157, 570 (2007).

    Article  Google Scholar 

  27. O. Jost, A. A. Gorbunov, and W. Pompe, Appl. Phys. Lett. 75, 2217 (1999).

    Article  ADS  Google Scholar 

  28. T. Movlarooy, A. Kompany, S. M. Hosseini, and N. Shahtahmasebi, Comput. Mater. Sci. 49, 450 (2010).

    Article  Google Scholar 

  29. V. Adamyan and S. Tishchenko, J. Phys.: Condens. Matter 19, 186206 (2007).

    ADS  Google Scholar 

  30. A. G. Marinopoulos, L. Wirtz, A. Marini, V. Olevano, A. Rubio, and L. Reining, Appl. Phys. A: Mater. Sci. Process. 78, 1157 (2004).

    Article  ADS  Google Scholar 

  31. E. Malić, M. Hirtschulz, F. Milde, A. Knorr, and S. Reich, Phys. Rev. B: Condens. Matter 74, 195431 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Murzashev.

Additional information

Original Russian Text © A.I. Murzashev, E.O. Shadrin, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 145, No. 6, pp. 1061–1071.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murzashev, A.I., Shadrin, E.O. Energy spectrum and optical absorption spectra of carbon nanotubes with chiralities of (10, 10), (11, 9), and (12, 8). J. Exp. Theor. Phys. 118, 935–944 (2014). https://doi.org/10.1134/S1063776114050148

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114050148

Keywords

Navigation