Skip to main content
Log in

Algebraic form of the M3-brane action

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We reformulate the bosonic action of an unstable M3-brane to manifest its algebraic representation. It is seen that in contrast to string and M2-brane actions, which are respectively represented only in terms of two- and three-dimensional Lie algebras, the algebraic form of the M3-brane action is a combination of four-, three-, and two-dimensional Lie algebras. Corresponding brackets appear as mixtures of the tachyon field, space-time coordinates X, the two-form field \(\hat \omega ^{(2)}\), and the Born-Infeld one-form \(\hat b_\mu\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Lee and J. H. Park, J. High Energy Phys. 0904, 012 (2009); K. Lee and J. H. Park, arXiv:0902.2417 [hepth].

    Article  ADS  Google Scholar 

  2. J. Bagger and N. Lambert, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 75, 045020 (2007); J. Bagger and N. Lambert, arXiv:hep-th/0611108.

    Article  Google Scholar 

  3. J. Bagger and N. Lambert, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 77, 065008 (2008); J. Bagger and N. Lambert, arXiv:0711.0955 [hep-th].

    Article  Google Scholar 

  4. J. Bagger and N. Lambert, J. High Energy Phys. 0802, 105 (2008); J. Bagger and N. Lambert, arXiv:0712.3738 [hep-th].

    Article  ADS  Google Scholar 

  5. A. Gustavsson, Nucl. Phys. B 811, 66 (2009); A. Gustavsson, arXiv:0709.1260 [hep-th].

    Article  ADS  Google Scholar 

  6. J. Polchinski, String Theory, Vol. 2: Superstring Theory and Beyond (Cambridge University Press, Cambridge, 1998).

    MATH  Google Scholar 

  7. R. C. Myers, J. High Energy Phys. 9912, 022 (1999); R. C. Myers, arXiv:hep-th/9910053.

    Article  ADS  Google Scholar 

  8. P. M. Ho and Y. Matsuo, J. High Energy Phys. 0806, 105 (2008); P. M. Ho and Y. Matsuo, arXiv:0804.3629 [hep-th].

    Article  ADS  Google Scholar 

  9. P. M. Ho, Y. Imamura, Y. Matsuo, and S. Shiba, J. High Energy Phys. 0808, 014 (2008); P. M. Ho, Y. Imamura, Y. Matsuo, and S. Shiba, arXiv:0805.2898 [hep-th].

    Article  ADS  Google Scholar 

  10. C. Krishnan and C. Maccaferri, J. High Energy Phys. 0807, 005 (2008); C. Krishnan and C. Maccaferri, arXiv:0805.3125 [hep-th].

    Article  ADS  Google Scholar 

  11. I. Jeon, J. Kim, N. Kim, S. W. Kim, and J.-H. Park, J. High Energy Phys. 0807, 056 (2008); I. Jeon, J. Kim, N. Kim, S. W. Kim, and J.-H. Park, arXiv:0805.3236 [hep-th].

    Article  ADS  Google Scholar 

  12. J.-H. Park and C. Sochichiu, arXiv:0806.0335 [hepth].

  13. I. A. Bandos and P. K. Townsend, arXiv:0806.4777 [hep-th].

  14. I. A. Bandos and P. K. Townsend, J. High Energy Phys. 0902, 013 (2009); I. A. Bandos and P. K. Townsend, arXiv:0808.1583 [hep-th].

    Article  ADS  Google Scholar 

  15. I. Jeon, J. Kim, N. Kim, B. H. Lee, and J.-H. Park, arXiv:0809.0856 [hep-th].

  16. K. Lee, S. Lee, and J.-H. Park, J. High Energy Phys. 0811, 014 (2008); K. Lee, S. Lee, and J.-H. Park, arXiv:0809.2924 [hep-th].

    Article  ADS  Google Scholar 

  17. D. Kamani, JETP 112(5), 794 (2011); D. Kamani, arXiv:0904.2721v3 [hep-th].

    Article  ADS  Google Scholar 

  18. Y. Nambu, Phys. Rev. D: Part. Fields 7, 2405 (1973).

    Article  ADS  Google Scholar 

  19. V. T. Filippov, Sib. Mat. Zh. 26(6), 126 (1985).

    Google Scholar 

  20. A. Sen, J. High Energy Phys. 08, 012 (1998); A. Sen, arXiv:hep-th/9805170.

    Article  ADS  Google Scholar 

  21. A. Sen, in Progress in String Theory and M-Theory, Ed. by L. Baulieu, M. Green, M. Picco, and P. Windey, in NATO Science Series (Springer-Verlag, Dordrecht, The Netherlands, 2001), Vol. 564; A. Sen, arXiv:hepth/9904207.

    Google Scholar 

  22. D. Kutasov, M. Marino, and G. Moore, J. High Energy Phys. 10, 045 (2000); D. Kutasov, M. Marino, and G. Moore, arXiv:hep-th/0009148.

    Article  ADS  Google Scholar 

  23. T. Lee, Phys. Rev. D: Part. Fields 64, 106004 (2001); T. Lee, arXiv:hep-th/0105115.

    Article  ADS  Google Scholar 

  24. K. Hashimoto, P. M. Ho, and J. E. Wang, Mod. Phys. Lett. A 20, 79 (2005); K. Hashimoto, P. M. Ho, and J. E. Wang, arXiv:hep-th/0411012.

    Article  ADS  Google Scholar 

  25. A. Lerda and R. Russo, Int. J. Mod. Phys. A 15, 771 (2000); A. Lerda and R. Russo, arXiv:hep-th/9905006.

    ADS  Google Scholar 

  26. Z. Rezaei and D. Kamani, JETP 113, 956 (2011); Z. Rezaei and D. Kamani, arXiv:1106.2097 [hep-th].

    Article  ADS  Google Scholar 

  27. Z. Rezaei, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 85, 086011 (2012); Z. Rezaei, arXiv:1205.0120 [hep-th].

    Article  Google Scholar 

  28. A. Sen, Int. J. Mod. Phys. A 14, 4061 (1999); A. Sen, arXiv:hep-th/9902105.

    Article  ADS  Google Scholar 

  29. K. Intriligator, M. Kleban, and J. Kumar, J. High Energy Phys. 02, 023 (2001); K. Intriligator, M. Kleban, and J. Kumar, arXiv:hep-th/0101010.

    Article  ADS  Google Scholar 

  30. J. Kluson, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 79, 026001 (2009); J. Kluson, arXiv:0810.0585 [hep-th].

    Article  Google Scholar 

  31. K. Becker, M. Becker, and J. Schwarz, String Theory and M-Theory: A Modern Introduction (Cambridge University Press, Cambridge, 2007).

    MATH  Google Scholar 

  32. S. Vandoren and P. Van Niewwenhuizen, arXiv:0802.1862v1.

  33. C. S. Chu and H. Isono, arXiv:1305.6808 [hep-th].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ghadjari.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadjari, H., Rezaei, Z. Algebraic form of the M3-brane action. J. Exp. Theor. Phys. 118, 723–727 (2014). https://doi.org/10.1134/S106377611405001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611405001X

Keywords

Navigation