Skip to main content
Log in

Spatiotemporal dispersion and waveguide properties of 2D-periodic metallic rod photonic crystals

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The method of integral equations based on the Green function of periodically arranged sources with a given phase shift (a periodic Green function) is used to investigate periodic metamaterials in the form of the simplest metallic and dielectric inclusions into a rectangular and cubic lattice in a dielectric medium (matrix) with permittivity ɛ. Metallic rods with a radius of the order of tens of nanometers are described by a complex macroscopic permittivity \(\operatorname{Re} \tilde \varepsilon < 0\). Waves in the terahertz and infrared ranges propagate along the rods virtually with the speed of light and with small losses weakly dependent on the transverse wave number, while those in the optical range, especially in its short-wavelength part, transform into slow waves of a dielectric waveguide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, Phys. Rev. B: Condens. Matter 63, 113103 (2003).

    Article  ADS  Google Scholar 

  2. I. S. Nefedov, A. J. Viitanen, and S. A. Tretyakov, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 71, 046612 (2005).

    Article  ADS  Google Scholar 

  3. M. V. Davidovich, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 9, 235 (2006).

    Google Scholar 

  4. M. V. Davidovich, Photonic Crystals: Green’s Functions, Integral Equations, the Results (Saratov University, Saratov, 2005) [in Russian].

    Google Scholar 

  5. I. S. Nefedov and A. J. Viitanen, in Metamaterials Handbook: Theory and Phenomena of Metamaterials, Ed. by F. Gapolino (Taylor and Francis, Boca Raton, Florida, 2009), p. 15-1.

  6. I. S. Nefedov, Phys. Rev. B: Condens. Matter 82, 155423 (2010).

    Article  ADS  Google Scholar 

  7. I. Nefedov and S. Tretyakov, Phys. Rev. B: Condens. Matter 84, 113410 (2011).

    Article  ADS  Google Scholar 

  8. I. S. Nefedov and C. R. Simovski, Phys. Rev. B: Condens. Matter 84, 195459 (2011).

    Article  ADS  Google Scholar 

  9. I. S. Nefedov and S. A. Tretyakov, Photonics Nanostruct. — Fundam. Appl. 9, 374 (2011).

    Article  ADS  Google Scholar 

  10. I. Liberal, I. S. Nefedov, I. Ederra, R. Gonzalo, and S. A. Tretyakov, J. Appl. Phys. 110, 104902 (2011).

    Article  ADS  Google Scholar 

  11. I. Liberal, I. S. Nefedov, I. Ederra, R. Gonzalo, and S. A. Tretyakov, J. Appl. Phys. 110, 064909 (2011).

    Article  ADS  Google Scholar 

  12. M. V. Davidovich, J. V. Stephuk, and P. A. Shilovskii, Tech. Phys. 57(3), 320 (2012).

    Article  Google Scholar 

  13. M. V. Davidovich and P. A. Shilovskii, Tech. Phys. 57(12), 1687 (2012).

    Article  Google Scholar 

  14. M. V. Davidovich and P. A. Shilovskii, Tech. Phys. 58(8), 1173 (2013).

    Article  Google Scholar 

  15. I. Liberal, I. S. Nefedov, I. Ederra et al., IEEE Trans. Antennas Propag. 60, 1921 (2012).

    Article  ADS  Google Scholar 

  16. I. S. Nefedov, Mater. Phys. Mech. 13, 1 (2012).

    Google Scholar 

  17. C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Yu. S. Kivshar, Adv. Mater. (Weinheim) 23(31), 4229 (2012).

    Article  Google Scholar 

  18. C. R. Simovski, I. Kolmakov, and S. A. Tretyakov, in Proceedings of the 11th International Conference on Mathematical Methods in Electromagnetic Theory, Kharkiv, Ukraine, June 26–29, 2006, p. 41.

  19. M. V. Davidovich and J. V. Stephuk, in Modeling in Applied Electromagnetics and Electronics, Ed. by M. V. Davidovich (Saratov University, Saratov, 2007), Issue 8, p. 67.

  20. M. V. Davidovich and J. V. Stephuk, in Proceedings of the 12th International Conference on Mathematical Methods in Electromagnetic Theory, Odessa, Ukraine, June 29–July 2, 2008, p. 527.

  21. Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, Adv. Optoelectron. 2012, 1 (2012). http://arxiv.org/ftp/arxiv/papers/1211/1211.0980.pdf.

    Article  Google Scholar 

  22. E. E. Narimanov, H. Li, Yu. A. Barnakov, T. U. Tumkur, and M. A. Noginov, arXiv:1109.5469v1 (2011).

  23. A. Rahman, S. Yu. Kosulnikov, Y. Hao, C. Parini, and P. A. Belov, J. Nanophotonics 5, 051601 (2011).

    Article  ADS  Google Scholar 

  24. M. V. Davidovich and J. V. Stephuk, in Proceedings of the 13th International Conference on Mathematical Methods in Electromagnetic Theory, Kyiv, Ukraine, September 6–8, 2010, 978-1-4244-8860-5/10.

  25. M. V. Davidovich and Yu. V. Stefyuk, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 53, 296 (2010).

    Google Scholar 

  26. A. Sommerfeld, Ann. Phys. 67, 233 (1899).

    Article  Google Scholar 

  27. L. A. Vainshtein, Electromagnetic Waves (Radio i Svyaz’, Moscow, 1988) [in Russian].

    Google Scholar 

  28. A. Sommerfeld, Math. Ann. 47, 317 (1896).

    Article  MathSciNet  Google Scholar 

  29. A. V. Kukushkin, A. A. Rukhadze, and K. Z. Rukhadze, Phys.—Usp. 55(11), 1124 (2012).

    Article  ADS  Google Scholar 

  30. V. V. Shevchenko, Zh. Radioelektron. 7, 1 (2013). http://jre.cplire.ru/alt/jul13/index.html.

    Google Scholar 

  31. G. V. Belokopytov, Waves in Guiding Structures (Moscow State University, Moscow, 2010) [in Russian].

    Google Scholar 

  32. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and Ñ. A. Ward, Appl. Opt. 22, 1099 (1983).

    Article  ADS  Google Scholar 

  33. M. V. Davidovich and Yu. V. Stefyuk, Opt. Spectrosc. 109(4), 596 (2010).

    Article  ADS  Google Scholar 

  34. G. T. Markov and A. F. Chaplin, Excitation of Electromagnetic Waves (Radio i Svyaz’, Moscow, 1983) [in Russian].

    Google Scholar 

  35. E. Yu. Al’tshuler, M. V. Davidovich, and Yu. V. Stefyuk, J. Commun. Technol. Electron. 55(1), 98 (2010).

    Article  Google Scholar 

  36. M. E. Feddi, Z. Ren, and A. Razek, IEEE Trans. Microwave Theory Tech. 33, 1382 (1997).

    Google Scholar 

  37. O. Ouchetto, C. W. Qiu, S. Zouhdi, L.-W. Li, and A. Razek, IEEE Trans. Microwave Theory Tech. 54(11) 3893 (2006).

    Article  ADS  Google Scholar 

  38. D. R. Smith and J. B. Pendry, J. Opt. Soc. Am. B 23, 391 (2006).

    Article  ADS  Google Scholar 

  39. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, Berlin, 2007; Regular and Chaotic Dynamics, Moscow, 2011).

    Google Scholar 

  40. D. G. Baranov, A. P. Vinogradov, K. R. Simovskii, I. S. Nefedov, and S. A. Tret’yakov, J. Exp. Theor. Phys. 114(4), 568 (2012).

    Article  ADS  Google Scholar 

  41. E. Yu. Al’tshuler, M. V. Davidovich, and Yu. V. Stefyuk, J. Commun. Technol. Electron. 55(1), 98 (2010).

    Article  Google Scholar 

  42. A. D. Pryamikov and A. S. Biryukov, Phys.—Usp. 56(8), 813 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Davidovich.

Additional information

Original Russian Text © M.V. Davidovich, I.S. Nefedov, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 145, No. 5, pp. 771–786.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidovich, M.V., Nefedov, I.S. Spatiotemporal dispersion and waveguide properties of 2D-periodic metallic rod photonic crystals. J. Exp. Theor. Phys. 118, 673–686 (2014). https://doi.org/10.1134/S1063776114040104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114040104

Keywords

Navigation