Skip to main content
Log in

On the Einstein-Cartan cosmology vs. Planck data

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The first comprehensive analyses of Planck data reveal that the cosmological model with dark energy and cold dark matter can satisfactorily explain the essential physical features of the expanding Universe. However, the inability to simultaneously fit the large and small scale TT power spectrum, the scalar power index smaller than unity, and the observations of the violation of the isotropy found by few statistical indicators of the CMB urge theorists to search for explanations. We show that the model of the Einstein-Cartan cosmology with clustered dark matter halos and their corresponding clustered angular momenta coupled to torsion can account for small-scale-large-scale discrepancy and larger peculiar velocities (bulk flows) for galaxy clusters. The nonvanishing total angular momentum (torsion) of the Universe enters as a negative effective density term in the Einstein-Cartan equations causing partial cancellation of the mass density. The integrated Sachs-Wolfe contribution of the Einstein-Cartan model is negative, and it can therefore provide partial cancellation of the large-scale power of the TT CMB spectrum. The observed violation of the isotropy appears as a natural ingredient of the Einstein-Cartan model caused by the spin densities of light Majorana neutrinos in the early stage of the evolution of the Universe and bound to the lepton CP violation and matter-antimatter asymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, L. Page, D. N. Spergel, G. S. Tucker, E. Wollack, E. L. Wright, C. Barnes, M. R. Greason, R. S. Hill, E. Komatsu, M. R. Nolta, N. Odegard, H. V. Peiris, L. Verde, and J. L. Weiland, Astrophys. J., Suppl. Ser. 148, 1 (2003).

    Article  ADS  Google Scholar 

  2. Planck Collab., arXiv:1303.5075.

  3. Planck Collab., arXiv:1303.5083.

  4. P. Birch, Nature (London) 298, 451 (1982).

    Article  ADS  Google Scholar 

  5. M. J. Longo, Phys. Lett. B 699, 224 (2011).

    Article  ADS  Google Scholar 

  6. A. Kashlinsky, F. Atrio-Barandela, D. Kocevski, and H. Ebeling, Astrophys. J. Lett. 686, L49 (2008).

    Article  ADS  Google Scholar 

  7. D. Hutsemékers, Astron. and Astrophys. 332, 410 (1998).

    ADS  Google Scholar 

  8. A. Trautman, Nature (London) 242, 7 (1973).

    ADS  Google Scholar 

  9. D. Palle, Nuovo Cimento Soc. Ital. Fis., B 111, 671 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  10. D. Palle, Nuovo Cimento Soc. Ital. Fis., B 122, 67 (2007).

    ADS  Google Scholar 

  11. D. Palle, Nuovo Cimento Soc. Ital. Fis., B 114, 853 (1999).

    ADS  Google Scholar 

  12. D. Palle, Entropy 14, 958 (2012).

    Article  ADS  Google Scholar 

  13. D. Palle, Eur. Phys. J. C 69, 581 (2010).

    Article  ADS  Google Scholar 

  14. D. Palle, Nuovo Cimento Soc. Ital. Fis., A 109, 1535 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  15. D. Palle, Nuovo Cimento Soc. Ital. Fis., B 115, 445 (2000); D. Palle, Nuovo Cimento Soc. Ital. Fis., B 118, 747 (2003).

    ADS  MathSciNet  Google Scholar 

  16. D. Palle, Hadronic J. 24, 87 (2001); D. Palle, Hadronic J. 24, 469 (2001); D. Palle, Acta Phys. Pol., B 43, 1723 (2012); D. Palle, Acta Phys. Pol., B 43, 2055 (2012); D. Palle, arXiv:1210.4404.

    Google Scholar 

  17. P. J. E. Peebles, The Large-Scale Structure of the Universe (Princeton University Press, Princeton, New Jersey, United States, 1980); P. J. E. Peebles, Astrophys. J. 277, 470 (1984).

    Google Scholar 

  18. T. Hahn, Comput. Phys. Commun. 168, 78 (2005).

    Article  ADS  MATH  Google Scholar 

  19. Planck Collab., arXiv:1303.5079.

  20. H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl. 78, 1 (1984).

    Article  ADS  Google Scholar 

  21. Planck Collab., arXiv:1303.5090; F. Atrio-Barandela, arXiv:1303.6614 (to appear in Astron. Astrophys.).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Palle.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palle, D. On the Einstein-Cartan cosmology vs. Planck data. J. Exp. Theor. Phys. 118, 587–592 (2014). https://doi.org/10.1134/S1063776114030157

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114030157

Keywords

Navigation