Skip to main content
Log in

First-principle study of the structural, electronic, and thermodynamic properties of cuprous oxide under pressure

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Cuprous oxide is selected as a promising material for photovoltaic applications. Density functional theory is used to study the structural, electronic, and thermodynamic properties of cuprous oxide by using the local density approximation and generalized-gradient approximation. The effect of pressure on the structural and electronic properties of Cu2O is investigated. This study confirms and characterizes the existence of new phases. Hexagonal and tetragonal phases are not completely indentified. We focus on the phase transition of the cuprous oxide under hydrostatic pressure to tetragonal and hexagonal (CdI2) structures. Variation of enthalpy with pressure is used to calculate the pressure of the phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. H. Brattain, Rev. Mod. Phys. 23, 203 (1951).

    Article  ADS  Google Scholar 

  2. C. Leygraf, Atmospheric Corrosion (Wiley, New York, 2000).

    Google Scholar 

  3. A. E. Rakhshani, A. A. Al-Jassar, and J. Varghese, Thin Solid Films 148, 191 (1987).

    Article  ADS  Google Scholar 

  4. G. P. Pollack and D. Trivich, J. Appl. Phys. 46, 163 (1975).

    Article  ADS  Google Scholar 

  5. R. P. Wijesundera, M. Hidaka, K. Koga, M. Sakai, and W. Siripala, Thin Solid Films 500, 241 (2006).

    Article  ADS  Google Scholar 

  6. G. Beensh-Marchwicka, L. Krol-Stepniewska, and M. Slaby, Thin Solid Films 88, 33 (1982).

    Article  ADS  Google Scholar 

  7. Y. Zhou and J. A. Switzer, Scr. Mater. 38, 1731 (1998).

    Article  Google Scholar 

  8. J. Ghisjen, L. H. Tjeng, J. Elp, and H. Eskes, Phys. Rev. B: Condens. Matter 38, 11322 (1988).

    Article  ADS  Google Scholar 

  9. S. Nikitine, J. B. Grun, and M. Sieskind, J. Phys. Chem. Solids 17, 292 (1961).

    Article  ADS  Google Scholar 

  10. Ch. Uihlein, D. Fröhlich, and R. Kenklies, Phys. Rev. B: Condens. Matter 23, 2731 (1981).

    Article  ADS  Google Scholar 

  11. A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, Appl. Phys. Lett. 88, 163502 (2006).

    Article  ADS  Google Scholar 

  12. T. Minami, T. Miyata, K. Ihara, Y. Minamino, and S. Tsukada, Thin Solid Films 494, 47 (2006).

    Article  ADS  Google Scholar 

  13. F. J. Manjón and D. Errandonea, Phys. Status Solidi B 246, 9 (2009).

    Article  ADS  Google Scholar 

  14. R. W. G. Wyckoff, Crystal Structures (Wiley, New York, 1965), Vol. 1.

    Google Scholar 

  15. P. Cortona and M. Mebarki, J. Phys.: Condens. Matter 23, 045502 (2011).

    ADS  Google Scholar 

  16. D. Manchon, V. V. Sinitsyn, V. P. Dmitriev, I. K. Bdikin, L. S. Dubrovinsky, I. V. Kuleshov, E. G. Ponyatovsky, and H. P. Weber, J. Phys.: Condens. Matter 15, 7227 (2003).

    ADS  Google Scholar 

  17. A. Onsten, M. Gothelid, and U. O. Karlsson, Surf. Sci. 603, 257 (2009).

    Article  ADS  Google Scholar 

  18. K. H. Schulz and D. F. Cox, Phys. Rev. B: Condens. Matter 43, 1610 (1991).

    Article  ADS  Google Scholar 

  19. F. Jensen, F. Besenbacher, E. Lægsgaard, and I. Stensgaard, Surf. Sci. Lett. 259, 774 (1991).

    ADS  Google Scholar 

  20. P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  21. W. Kohn and L. J. Sham, Phys. Rev. 140, 1133 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  22. X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.-Y. Raty, and D. C. Allan, Comput. Mater. Sci. 25, 478 (2002). http://www.abinit.org.

    Article  Google Scholar 

  23. X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. óté, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, D. R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. J. T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. J. Verstraete, G. Zerah, and J. W. Zwanziger, Comput. Phys. Commun. 180, 2582 (2009).

    Article  ADS  Google Scholar 

  24. W. C. Topp and J. J. Hopfield, Phys. Rev. B: Solid State 7, 1295 (1973).

    Article  ADS  Google Scholar 

  25. N. Troullier and J. L. Martins, Phys. Rev. B: Condens. Matter 43, 1993 (1991).

    Article  ADS  Google Scholar 

  26. M. Fuchs and M. Scheffler, Comput. Phys. Commun. 119, 67 (1999).

    Article  ADS  MATH  Google Scholar 

  27. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  ADS  Google Scholar 

  28. J. P. Perdew and A. Zunger, Phys. Rev. B: Condens. Matter 23, 5048 (1981).

    Article  ADS  Google Scholar 

  29. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  30. H. J. Monkhorst and J. D. Pack, Phys. Rev. B: Solid State 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  31. F. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. F. Bruneval, PhD Thesis (Ecole Polytechnique, Paris, 2005).

  33. A. Sanson, F. Rocca, G. Dalba, P. Fornasini, R. Grisenti, M. Dapiaggi, and G. Artioli, Phys. Rev. B: Condens. Matter 73, 214305 (2006).

    Article  ADS  Google Scholar 

  34. A. Werner and H. D. Hochheimer, Phys. Rev. B: Condens. Matter 25, 5929 (1982).

    Article  ADS  Google Scholar 

  35. B. P. Rai, Solid Cell. 25, 265 (1988).

    Article  Google Scholar 

  36. A. R. Oganov, High Pressure Crystallography: Habilitation Thesis (ETH, Zurich, 2007).

    Google Scholar 

  37. M. Hebbache and M. Zemzemi, Phys. Rev. B: Condens. Matter 70, 224107 (2004).

    Article  ADS  Google Scholar 

  38. O. L. Anderson, Equations of State of Solids for Geophysics and Ceramic Science (Oxford University Press, Oxford, 1995).

    Google Scholar 

  39. P. Vinet, J. H. Rose, J. Ferrante, and J. R. Smith, J. Phys.: Condens. Matter 1, 1941 (1989).

    ADS  Google Scholar 

  40. A. Martinez-Ruiz, M. G. Moreno, and N. Takeuchi, Solid State Sci. 5, 291 (2003).

    Article  ADS  Google Scholar 

  41. W. Y. Ching, Y.-N. Xu, and K. W. Wong, Phys. Rev. B: Condens. Matter 40, 7684 (1989).

    Article  ADS  Google Scholar 

  42. P. W. Baumeister, Phys. Rev. 121, 359 (1961).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zemzemi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zemzemi, M., Elghoul, N., Khirouni, K. et al. First-principle study of the structural, electronic, and thermodynamic properties of cuprous oxide under pressure. J. Exp. Theor. Phys. 118, 235–241 (2014). https://doi.org/10.1134/S1063776114020228

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114020228

Keywords

Navigation