Skip to main content
Log in

Time-dependent photon correlations for incoherently pumped quantum dot strongly coupled to the cavity mode

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The time dependence of correlations between the photons emitted from a microcavity with an embedded quantum dot under incoherent pumping is studied theoretically. Analytic expressions for the second-order correlation function g (2)(t) are presented in strong and weak coupling regimes. The qualitative difference between the incoherent and coherent pumping schemes in the strong coupling case is revealed: under incoherent pumping, the correlation function demonstrates pronounced Rabi oscillations, but in the resonant pumping case, these oscillations are suppressed. At high incoherent pumping, the correlations decay monoexponentially. The decay time nonmonotonically depends on the pumping value and has a maximum corresponding to the self-quenching transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kavokin, J. Baumberg, G. Malpuech, and F. Laussy, Microcavities (Clarendon, Oxford, 2006).

    Google Scholar 

  2. A. Muller, W. Fang, J. Lawall, and G. S. Solomon, Phys. Rev. Lett. 103, 217402 (2009).

    Article  ADS  Google Scholar 

  3. A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaitre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, Nature (London) 466, 217 (2010).

    Article  ADS  Google Scholar 

  4. A. Kuhn and D. Ljunggren, Contemp. Phys. 51, 289 (2010).

    Article  ADS  Google Scholar 

  5. H. Carmichael, An Open Systems Approach to Quantum Optics (Springer-Verlag, New York (1993).

    MATH  Google Scholar 

  6. E. del Valle, A. Gonzalez-Tudela, F. P. Laussy, C. Tejedor, and M. J. Hartmann, Phys. Rev. Lett. 109, 183601 (2012).

    Article  ADS  Google Scholar 

  7. P. Michler, A. Imamoǧlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, Nature (London) 406, 968 (2000).

    Article  ADS  Google Scholar 

  8. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, Science (Washington) 295, 102 (2002).

    Article  ADS  Google Scholar 

  9. M. Calic, P. Gallo, M. Felici, K. A. Atlasov, B. Dwir, A. Rudra, G. Biasiol, L. Sorba, G. Tarel, V. Savona, and E. Kapon, Phys. Rev. Lett. 106, 227402 (2011).

    Article  ADS  Google Scholar 

  10. C. A. Kessler, M. Reischle, F. Hargart, W.-M. Schulz, M. Eichfelder, R. Roβbach, M. Jetter, P. Michler, P. Gartner, M. Florian, C. Gies, and F. Jahnke, Phys. Rev. B: Condens. Matter 86, 115326 (2012).

    Article  ADS  Google Scholar 

  11. M. Abbarchi, T. Kuroda, T. Mano, M. Gurioli, and K. Sakoda, Phys. Rev. B: Condens. Matter 86, 115330 (2012).

    Article  ADS  Google Scholar 

  12. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, Nat. Phys. 2, 81 (2006).

    Article  Google Scholar 

  13. S. Reitzenstein and A. Forchel, J. Phys. D: Appl. Phys. 43, 033001 (2010).

    Article  ADS  Google Scholar 

  14. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, Nat. Phys. 6, 279 (2010).

    Article  Google Scholar 

  15. A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, Nat. Photonics 5, 91 (2011).

    Article  ADS  Google Scholar 

  16. C. Schneider, T. Heindel, A. Huggenberger, T. A. Niederstrasser, S. Reitzenstein, A. Forchel, S. Hofling, and M. Kamp, Appl. Phys. Lett. 100, 091108 (4 pages) (2012).

    Article  ADS  Google Scholar 

  17. H. J. Kimble, Phys. Scr., T 76, 127 (1998).

    Article  ADS  Google Scholar 

  18. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, Nature (London) 432, 200 (2004).

    Article  ADS  Google Scholar 

  19. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, Nature (London) 432, 197 (2004).

    Article  ADS  Google Scholar 

  20. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, United Kingdom, 1997).

    Book  Google Scholar 

  21. J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, Nature (London) 425, 268 (2003).

    Article  ADS  Google Scholar 

  22. A. D. Boozer, A. Boca, J. R. Buck, J. McKeever, and H. J. Kimble, Phys. Rev. A: At., Mol., Opt. Phys. 70, 023814 (2004).

    Article  ADS  Google Scholar 

  23. H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. 39, 691 (1977).

    Article  ADS  Google Scholar 

  24. D. Walls, Nature (London) 280, 451 (1979).

    Article  ADS  Google Scholar 

  25. M. Hennrich, A. Kuhn, and G. Rempe, Phys. Rev. Lett. 94, 053604 (2005).

    Article  ADS  Google Scholar 

  26. H. Jabri and H. Eleuch, Commun. Theor. Phys. 56, 134 (2011).

    Article  ADS  MATH  Google Scholar 

  27. Y. Mu and C. M. Savage, Phys. Rev. A: At., Mol., Opt. Phys. 46, 5944 (1992).

    Article  ADS  Google Scholar 

  28. E. del Valle, F. P. Laussy, and C. Tejedor, Phys. Rev. B: Condens. Matter 79, 235326 (2009).

    Article  ADS  Google Scholar 

  29. E. del Valle and F. P. Laussy, Phys. Rev. A: At., Mol., Opt. Phys. 84, 043816 (2011).

    Article  ADS  Google Scholar 

  30. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, Phys. Rev. Lett. 98, 117402 (2007).

    Article  ADS  Google Scholar 

  31. E. Illes and S. Hughes, Phys. Rev. B: Condens. Matter 81, 121310 (2010).

    Article  ADS  Google Scholar 

  32. N. S. Averkiev, M. M. Glazov, and A. N. Poddubnyi, J. Exp. Theor. Phys. 108, 836 (2009).

    Article  ADS  Google Scholar 

  33. A. N. Poddubny, M. M. Glazov, and N. S. Averkiev, New J. Phys. 15, 025016 (2013).

    Article  ADS  Google Scholar 

  34. A. N. Poddubny, M. M. Glazov, and N. S. Averkiev, Phys. Rev. B: Condens. Matter 82, 205330 (2010).

    Article  ADS  Google Scholar 

  35. E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).

    Article  Google Scholar 

  36. S. Reitzenstein and A. Forchel, J. Phys. D: Appl. Phys. 43, 033001 (2010).

    Article  ADS  Google Scholar 

  37. H. Haken, Z. Phys. 181, 96 (1964).

    Article  ADS  Google Scholar 

  38. M. M. Glazov, M. A. Semina, E. Y. Sherman, and A. V. Kavokin, Phys. Rev. B 88, 041309 (R) (2013).

    Article  ADS  Google Scholar 

  39. F. P. Laussy, E. del Valle, and C. Tejedor, Phys. Rev. B: Condens. Matter 79, 235325 (2009).

    Article  ADS  Google Scholar 

  40. H. Risken, The Fokker Planck Equation: Methods of Solution and Applications (Springer-Verlag, Berlin, 1989).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Poshakinskiy.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poshakinskiy, A.V., Poddubny, A.N. Time-dependent photon correlations for incoherently pumped quantum dot strongly coupled to the cavity mode. J. Exp. Theor. Phys. 118, 205–216 (2014). https://doi.org/10.1134/S1063776114020186

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114020186

Keywords

Navigation