Skip to main content
Log in

Critical magnetization and hysteresis of nanogranular films with perpendicular anisotropy

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The magnetic-field dependences of the stability boundaries of the nonequilibrium magnetic states that exist in a nanogranular film with perpendicular anisotropy in tilted magnetic fields are theoretically described, and the corresponding critical magnetization is calculated. The field dependences of the critical magnetization of the film are analyzed at various ratios of the anisotropy field of particles to the maximum possible demagnetizing field of the film. In a tilted magnetic field, the magnetization reversal curves, which include hysteresis loops, are shown to consist of segments of the following three types: equilibrium stable magnetization, nonequilibrium stable magnetization, and critical type of magnetization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science (Washington) 287, 1989 (2000).

    Article  ADS  Google Scholar 

  2. D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J.-U. Thiele, and M. F. Doerner, IEEE Trans. Magn. 36, 10 (2000).

    Article  ADS  Google Scholar 

  3. C. A. Ross, Annu. Rev. Mater. Res. 31, 203 (2001).

    Article  ADS  Google Scholar 

  4. R. H. Victora, J. Xue, and M. Patwari, IEEE Trans. Magn. 38, 1886 (2002).

    Article  ADS  Google Scholar 

  5. R. Skomski, J. Phys.: Condens. Matter 15, R841 (2003).

    ADS  Google Scholar 

  6. M. L. Yan, X. Z. Li, L. Gao, S. H. Liou, D. J. Sellmyer, R. J. M. van de Veerdonk, and K. W. Wierman, Appl. Phys. Lett. 83, 3332 (2003).

    Article  ADS  Google Scholar 

  7. D. Kechrakos and K. N. Trohidou, J. Magn. Magn. Mat. 262, 107 (2003).

    Article  ADS  Google Scholar 

  8. J. Bansmann, S. H. Baker, C. Binns, J. A. Blackman, J.-P. Bucher, J. Dorantes-Davila, V. Dupuis, L. Favre, D. Kechrakos, A. Kleibert, K.-H. Meiwes-Broer, G.M. Pastor, A. Perez, O. Toulemonde, K. N. Trohidou, J. Tuaillon, and Y. Xie, Surf. Sci. Rep. 56, 189 (2005).

    Article  ADS  Google Scholar 

  9. R. S. Iskhakov, S. V. Komogortsev, E. A. Denisova, Yu. E. Kalinin, and A. V. Sitnikov, JETP Lett. 86(7), 465 (2007).

    Article  ADS  Google Scholar 

  10. L. Neel, Ann. Geophys. 5, 99 (1949).

    Google Scholar 

  11. C. P. Bean and J. D. Livingston, J. Appl. Phys. 30, 120S (1959).

    Article  ADS  Google Scholar 

  12. C. Stamm, F. Marty, A. Vaterlaus, V. Weich, S. Egger, U. Maier, U. Ramsperger, H. Fuhrmann, and D. Pescia, Science (Washington) 282, 449 (1998).

    Article  ADS  Google Scholar 

  13. W. F. Brown, Phys. Rev. 130, 1677 (1963).

    Article  ADS  Google Scholar 

  14. S. A. Majetich and Y. Jin, Science (Washington) 284, 470 (1999).

    Article  ADS  Google Scholar 

  15. A. A. Timofeev, V. M. Kalita, and S. M. Ryabchenko, Low Temp. Phys. 34(6), 446 (2008).

    Article  ADS  Google Scholar 

  16. S. V. Komogortsev, E. A. Denisova, R. S. Iskhakov, A. D. Balaev, L. A. Chekanova, Yu. E. Kalinin, and A. V. Sitnikov, J. Appl. Phys. 113, 17C105 (2013).

    Article  Google Scholar 

  17. E. Z. Meilikhov and R. M. Farzetdinova, J. Exp. Theor. Phys. 94(4), 751 (2002).

    Article  ADS  Google Scholar 

  18. P. V. Bondarenko, A. Yu. Galkin, and B. A. Ivanov, J. Exp. Theor. Phys. 112(6), 986 (2011).

    Article  ADS  Google Scholar 

  19. A. M. Shutyi, J. Exp. Theor. Phys. 110(2), 243 (2010).

    Article  ADS  Google Scholar 

  20. S. Morup, Hyperfine Interact. 90, 171 (1994).

    Article  ADS  Google Scholar 

  21. N. J. O. Silva, J. S. Amaral, V. S. Amaral, B. F. O. Costa, and G. Le Caër, J. Phys.: Condens. Matter 21, 046003 (2009).

    ADS  Google Scholar 

  22. V. V. Kokorin and I. A. Osipenko, JETP Lett. 29(11), 610 (1979).

    ADS  Google Scholar 

  23. A. A. Timopheev, V. M. Kalita, S. M. Ryabchenko, A. F. Lozenko, P. A. Trotsenko, A. V. Los, and M. Munakata, J. Appl. Phys. 108, 053902 (2010).

    Article  ADS  Google Scholar 

  24. S. M. Ryabchenko, A. A. Timofeev, V. M. Kalita, A. F. Lozenko, P. A. Trotsenko, V. A. Stefanovich, and M. Munakata, Low Temp. Phys. 36(8–9), 682 (2010).

    Article  ADS  Google Scholar 

  25. W. Kleemann, O. Petracic, C. Binek, G. N. Kakazei, Y. G. Pogorelov, J. B. Sousa, S. Cardoso, and P. P. Freitas, Phys. Rev. B: Condens. Matter 63, 134423 (2001).

    Article  ADS  Google Scholar 

  26. A. A. Timopheev, S. M. Ryabchenko, V. M. Kalita, A. F. Lozenko, P. A. Trotsenko, V. A. Stephanovich, and M. Munakata, J. Appl. Phys. 108, 033919 (2010).

    Article  ADS  Google Scholar 

  27. E. C. Stoner and E. P. Wohlfarth, Philos. Trans. R. Soc. London, Ser. A 240, 599 (1948).

    Article  ADS  MATH  Google Scholar 

  28. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1992; Butterworth-Heinemann, Oxford, 1993).

    Google Scholar 

  29. R. Skomski, G. C. Hadjipanayis, and D. J. Sellmyer, IEEE Trans. Magn. 43, 2956 (2007).

    Article  ADS  Google Scholar 

  30. A. N. Dobrynin, V. M. T. S. Barthem, and D. Givord, Appl. Phys. Lett. 95, 052511 (2009).

    Article  ADS  Google Scholar 

  31. G. N. Kakazei, A. F. Kravets, N. A. Lesnik, M. M. Pereira de Azevedo, Yu. G. Pogorelov, and J. B. Sousa, J. Appl. Phys. 85, 5654 (1999).

    Article  ADS  Google Scholar 

  32. V. M. Kalita and S. M. Ryabchenko, Low Temp. Phys. 38(3), 199 (2012).

    Article  ADS  Google Scholar 

  33. V. M. Kalita, A. F. Lozenko, S. M. Ryabchenko, A. V. Los, A. V. Sitnikov, and O. V. Stognei, J. Phys.: Condens. Matter 25, 066009 (2013).

    ADS  Google Scholar 

  34. T. Itoh, T. Kato, S. Iwata, and S. Tsunashima, IEEE Trans. Magn. 41, 3217 (2005).

    Article  ADS  Google Scholar 

  35. Yun-Chung Wu, Liang-Wei Wang, and Chih-Huang Lai, Appl. Phys. Lett. 91, 072502 (2007).

    Article  ADS  Google Scholar 

  36. G. R. Trichy, D. Chakraborti, J. Narayan, and J. T. Prater, J. Phys. D: Appl. Phys. 40, 7273 (2007).

    Article  ADS  Google Scholar 

  37. R. Ikeda, M. Kagami, T. Kato, S. Iwata, and S. Tsunashima, J. Magn. Soc. Jpn. 33, 493 (2009).

    Article  Google Scholar 

  38. J. L. Tsai, J. C. Huang, H. W. Tai, W.-C. Tsai, and Y.-C. Lin, J. Magn. Magn. Mater. 329, 6 (2013).

    Article  ADS  Google Scholar 

  39. A. Perumal, L. Zhang, Y. K. Takahashi, and K. Hono, J. Appl. Phys. 108, 083907 (2010).

    Article  ADS  Google Scholar 

  40. V. M. Kalita, A. A. Timopheev, and S. M. Ryabchenko, J. Exp. Theor. Phys. 112(3), 441 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kalita.

Additional information

Original Russian Text © S.M. Ryabchenko, V.M. Kalita, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 145, No. 2, pp. 325–339.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryabchenko, S.M., Kalita, V.M. Critical magnetization and hysteresis of nanogranular films with perpendicular anisotropy. J. Exp. Theor. Phys. 118, 284–296 (2014). https://doi.org/10.1134/S1063776114020058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114020058

Keywords

Navigation