Skip to main content
Log in

Phonons and the electronic gap in FeSi

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The partial phonon densities of states of iron atoms in the intermetallic compound FeSi have been measured in the temperature range 46–297 K using nuclear resonant inelastic scattering of synchrotron radiation. A significant phonon softening with increasing temperature has been established. The greatest phonon softening for iron atoms is shown to occur in the region of long-wavelength acoustic phonons, for the acoustic branches near the boundary of the Brillouin zone, and for the low-lying weakly dispersive optical branches. The results obtained are analyzed in terms of the views that relate the change in the phonon density of states of iron atoms to the temperature evolution of the electronic density of state for the compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Jaccarino, G. K. Wertheim, J. H. Wernick, L. R. Walker, and S. Arajs, Phys. Rev. 160, 476 (1967).

    Article  ADS  Google Scholar 

  2. Z. Schlesinger, Z. Fisk, Zhang Hai-Tao, M. B. Maple, J. F. DiTusa, and G. Aeppi, Phys. Rev. Lett. 71, 1748 (1993).

    Article  ADS  Google Scholar 

  3. D. Mandrus, J. L. Sarrao, A. Migliori, J. D. Thompson, and Z. Fisk, Phys. Rev. B: Condens. Matter 51, 4763 (1995).

    Article  ADS  Google Scholar 

  4. S. Paschen, E. Felder, M. A. Chernikov, L. Degiorgi, H. Schwer, H. R. Ott, D. P. Young, J. L. Sarrao, and Z. Fisk, Phys. Rev. B: Condens. Matter 56, 12916 (1997).

    Article  ADS  Google Scholar 

  5. M. A. Chernikov, L. Degiorgi, E. Felder, S. Paschen, A.D. Bianchi, H. R. Ott, J. L. Sarrao, Z. Fisk, and D. Mandrus, Phys. Rev. B: Condens. Matter 56, 1366 (1997).

    Article  ADS  Google Scholar 

  6. K. Breuer, S. Messerli, D. Purdie, M. Carnier, M. Hengsberger, and Y. Baer, Phys. Rev. B: Condens. Matter 56, R7061 (1997).

    Article  ADS  Google Scholar 

  7. L. Pauling and A. M. Soldate, Acta Crystallogr. 1, 212 (1948).

    Article  Google Scholar 

  8. K. Ishizaka, T. Kiss, T. Shimojima, T. Yokoya, T. Togashi, S. Watanabe, C. Q. Zhang, C. T. Chen, Y. Onose, Y. Tokura, and S. Shin, Phys. Rev. B: Condens. Matter 72, 233202 (2005).

    Article  ADS  Google Scholar 

  9. P. Riseborough, Adv. Phys. 49, 257 (2000).

    Article  ADS  Google Scholar 

  10. A. E. Petrova, V. N. Krasnorussky, A. A. Shikov, W. M. Yuhasz, T. A. Lograsso, J. C. Lashley, and S. M. Stishov, Phys. Rev. B: Condens. Matter 82, 155124 (2010).

    Article  ADS  Google Scholar 

  11. J. Acker, K. Bohmhammel, G. J. K. van den Berg, J. C. van Miltenburg, and Ch. Kloc, J. Chem. Thermodyn. 31, 1523 (1999).

    Article  Google Scholar 

  12. J. L. Sarrao, D. Mandrus, A. Migliori, Z. Fisk, and E. Busher, Physica B (Amsterdam) 199–200, 478 (1994).

    Article  Google Scholar 

  13. L. Vo adlo, K. S. Knight, G. D. Price, and I. G. Wood, Phys. Chem. Miner. 29, 132 (2002).

    Article  ADS  Google Scholar 

  14. A. Damascelli, K. Schulte, D. van der Marel, and A. A. Menovsky, Phys. Rev. B: Condens. Matter 55, R4863 (1997).

    Article  ADS  Google Scholar 

  15. D. Menzel, P. Popovich, N. N. Kovaleva, J. Schoenes, K. Doll, and A. V. Boris, Phys. Rev. B: Condens. Matter 79, 165111 (2009).

    Article  ADS  Google Scholar 

  16. A.-M. Racu, D. Menzel, J. Schoenes, and K. Doll, Phys. Rev. B: Condens. Matter 76, 115103 (2007).

    Article  ADS  Google Scholar 

  17. A.-M. Racu, D. Menzel, J. Schoenes, M. Marutzky, S. Johnsen, and B. B. Iversen, J. Appl. Phys. 103, 07C912 (2008).

    Article  Google Scholar 

  18. O. Delaire, K. Marty, M. B. Stone, P. R. C. Kent, M. S. Lucas, D. L. Abernathy, D. Mandrus, and B. C. Sales, Proc. Natl. Acad. Sci. USA 108, 4725 (2011).

    Article  ADS  Google Scholar 

  19. M. Arita, K. Shimada, Y. Takeda, M. Nakatake, H. Namatame, M. Taniguchi, H. Negishi, T. Oguchi, T. Saitoh, A. Fujimori, and T. Kanomata, Phys. Rev. B: Condens. Matter 77, 205117 (2008).

    Article  ADS  Google Scholar 

  20. P. P. Parshin, M. G. Zemlyanov, and P. I. Soldatov, Sov. Phys. JETP 74(2), 400 (1992).

    Google Scholar 

  21. P. P. Parshin, M. G. Zemlyanov, and R. A. Brand, J. Exp. Theor. Phys. 101(4), 676 (2005).

    Article  ADS  Google Scholar 

  22. M. Seto, Y. Yoda, S. Kikuta, X. W. Zhang, and M. Ando, Phys. Rev. Lett. 74, 3828 (1995).

    Article  ADS  Google Scholar 

  23. W. Sturhahn, T. S. Toellner, E. E. Alp, X. Zhang, M. Ando, Y. Yoda, S. Kikuta, M. Seto, C. W. Kimball, and B. Dabrowski, Phys. Rev. Lett. 74, 3832 (1995).

    Article  ADS  Google Scholar 

  24. A. I. Chumakov, R. Rüffer, H. Grünsteudel, H. F. Grünsteudel, G. Grübel, J. Metge, O. Leupold, and H. A. Goodwin, Europhys. Lett. 30, 427 (1995).

    Article  ADS  Google Scholar 

  25. A. I. Chumakov, A. Q. R. Baron, R. Rüffer, H. Grünsteudel, H. F. Grünsteudel, and A. Meyer, Phys. Rev. Lett. 76, 4258 (1996).

    Article  ADS  Google Scholar 

  26. A. I. Chumakov, R. Rüffer, A. Q. R. Baron, H. Grünsteudel, and H. F. Grünsteudel, Phys. Rev. B: Condens. Matter 54, R9598 (1996).

    Article  ADS  Google Scholar 

  27. A. Chumakov and R. Rüffer, Hyperfine Interact. 113, 59 (1998).

    Article  ADS  Google Scholar 

  28. A. I. Chumakov, Phys. Status Solidi B 215, 165 (1999).

    Article  ADS  Google Scholar 

  29. A. I. Chumakov and W. Sturhahn, Hyperfine Interact. 123/124, 781 (1999).

    Article  Google Scholar 

  30. A. I. Chumakov, A. Barla, R. Rüffer, H. F. Grünsteudel, and H. Grünsteudel, Phys. Rev. B: Condens. Matter 58, 254 (1998).

    Article  ADS  Google Scholar 

  31. R. Rüffer and A. I. Chumakov, Hyperfine Interact. 97/98, 589 (1996).

    Article  ADS  Google Scholar 

  32. A. Barla, R. Rüffer, A. I. Chumakov, and J. Metge, Phys. Rev. B: Condens. Matter 61, R14881 (2000).

    Article  ADS  Google Scholar 

  33. A. I. Chumakov, R. Rüffer, A. Q. R. Baron, H. Grünsteudel, and H. F. Grünsteudel, Phys. Rev. B: Condens. Matter 54, R9596 (1996).

    Article  ADS  Google Scholar 

  34. V. G. Kohn and A. I. Chumakov, Hyperfine Interact. 125, 205 (2000).

    Article  Google Scholar 

  35. A. Q. R. Baron, Nucl. Instrum. Methods Phys. Res., Sect. A 352, 665 (1995).

    Article  ADS  Google Scholar 

  36. Y. J. Lipkin, Phys. Rev. B: Condens. Matter 52, 10073 (1995).

    Article  ADS  Google Scholar 

  37. M. Y. Hu, W. Sturhahn, T. S. Toellner, P. D. Mannheim, D. E. Brown, J. Zhao, and E. E. Alp, Phys. Rev. B: Condens. Matter 67, 094304 (2003).

    Article  ADS  Google Scholar 

  38. D. Lamago, E. S. Clementyev, A. S. Ivanov, R. Heid, J.-M. Mignot, A. E. Petrova, and P. A. Alekseev, Phys. Rev. B: Condens. Matter 82, 144307 (2010).

    Article  ADS  Google Scholar 

  39. J. D. Axe and G. Shirane, Phys. Rev. Lett. 30, 214 (1973).

    Article  ADS  Google Scholar 

  40. V. V. Glushkov, B. P. Gorshunov, E. S. Zhukova, S. V. Demishev, A. A. Pronin, N. E. Sluchanko, S. Kaiser, and M. Dressel, Phys. Rev. B: Condens. Matter 84, 073108 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Parshin.

Additional information

Original Russian Text © P.P. Parshin, P.A. Alekseev, K.S. Nemkovskii, J. Perßon, A.I. Chumakov, R. Rüffer, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 145, No. 2, pp. 279–291.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parshin, P.P., Alekseev, P.A., Nemkovskii, K.S. et al. Phonons and the electronic gap in FeSi. J. Exp. Theor. Phys. 118, 242–252 (2014). https://doi.org/10.1134/S1063776114020034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114020034

Keywords

Navigation