Skip to main content
Log in

Phonon focusing and temperature dependences of the thermal conductivity of silicon nanowires

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The influence of phonon focusing on the anisotropy and temperature dependences of the thermal conductivity of silicon nanowires (NWs) has been studied using the three-mode Callaway theory. The calculated temperature dependences of the thermal conductivity of silicon NWs with diameters above 50 nm agree well with experimental data in the 20–300 K range. The temperatures of transitions from the boundary-scattering to volume-relaxation mechanisms are determined. Variation of the thermal conductivity anisotropy depending on temperature is analyzed. The free paths of phonons with various polarizations in the boundary scattering regime in silicon NWs significantly differ and depend to a considerable degree on the phonon focusing. The free paths reach maxima in the directions of phonon focusing and exceed values for other oscillatory modes. However, in the isotropic medium model, the phonon free paths for various polarizations coincide and are fully determined by the geometric parameters of NWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003).

    Article  ADS  Google Scholar 

  2. H. J. Maris and S. Tamura, Phys. Rev. B: Condens. Matter 85, 054304 (2012).

    Article  ADS  Google Scholar 

  3. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, J. Appl. Phys. 93, 793 (2003).

    Article  ADS  Google Scholar 

  4. A. D. McConnell and K. E. Goodson, Annu. Rev. Heat Transfer 14, 128 (2005).

    Article  Google Scholar 

  5. B. Taylor, H. J. Maris, and C. Elbaum, Phys. Rev. Lett. 23, 416 (1969).

    Article  ADS  Google Scholar 

  6. H. J. Maris, J. Acoust. Soc. Am. 50, 812 (1971).

    Article  ADS  Google Scholar 

  7. J. P. Wolfe, Imaging Phonons Acoustic Wave Propagation in Solids (Cambridge University Press, New York, 1998).

    Book  Google Scholar 

  8. A. K. McCurdy, H. J. Maris, and C. Erlbaum, Phys. Rev. B: Solid State 2, 4077 (1970).

    Article  ADS  Google Scholar 

  9. Y. F. Zhu, J. S. Lian, and Q. Jiang, Appl. Phys. Lett. 92, 113101 (2008).

    Article  ADS  Google Scholar 

  10. A. K. Suleiman and A.-G. K. Faiq, J. Educ. Sci. (Iraq) 23(43), 64 (2010).

    Google Scholar 

  11. N. Mingo, Phys. Rev. B: Condens. Matter 68, 113308 (2003).

    Article  ADS  Google Scholar 

  12. H. B. G. Casimir, Physica (Amsterdam) 5, 495 (1938).

    Article  ADS  Google Scholar 

  13. J. Guo, B. Wen, R. Melnik, S. Yao, and T. Li, Physica E (Amsterdam) 43, 155 (2010); J.-W. Jiang, B.-S. Wang, and J.-S. Wang, Phys. Rev. B: Condens. Matter 83, 235432 (2011).

    Article  ADS  Google Scholar 

  14. W. Li, N. Mingo, L. Lindsay, D. A. Broido, D. A. Stewart, and N. A. Katcho, Phys. Rev. B: Condens. Matter 85, 195436 (2012).

    Article  ADS  Google Scholar 

  15. J. Callaway, Phys. Rev. 113, 1046 (1959).

    Article  ADS  MATH  Google Scholar 

  16. J. A. Krumhansl, Proc. Phys. Soc., London 85, 921 (1965).

    Article  ADS  Google Scholar 

  17. I. G. Kuleev and I. I. Kuleev, J. Exp. Theor. Phys. 93(3), 568 (2001); I. G. Kuleev and I. I. Kuleev, J. Exp. Theor. Phys. 93 (3), 568 (2001); I. G. Kuleev and I. I. Kuleev, J. Exp. Theor. Phys. 95 (3), 480 (2002).

    Article  ADS  Google Scholar 

  18. V. L. Gurevich, Transport in Phonon Systems (Nauka, Moscow, 1980; Elsevier, Amsterdam, 1988).

    Google Scholar 

  19. R. Berman, Thermal Conduction (Oxford University Press, Oxford, 1976; Mir, Moscow, 1979).

    Google Scholar 

  20. B. M. Mogilevskii and A. F. Chudnovskii, Thermal Conductivity of Semiconductors (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  21. I. I. Kuleyev, I. G. Kuleyev, S. M. Bakharev, and A. V. Inyushkin, Phys. Solid State 55(1), 31 (2013).

    Article  ADS  Google Scholar 

  22. I. I. Kuleyev, I. G. Kuleyev, S. M. Bakharev, and A. V. Inyushkin, Physica B (Amsterdam) 416, 81 (2013).

    Article  ADS  Google Scholar 

  23. I. I. Kuleyev, I. G. Kuleyev, S. M. Bakharev, and A. V. Inyushkin, Phys. Solid State 55(7), 1545 (2013).

    Article  ADS  Google Scholar 

  24. G. Nilson and G. Nelin, Phys. Rev. B: Solid State 6, 3777 (1972).

    Article  ADS  Google Scholar 

  25. R. Berman, F. E. Simon, and J. M. Ziman, Proc. R. Soc. London, Ser. A 220, 171 (1953); R. Berman, E. L. Foster, and J. M. Ziman, Proc. R. Soc. London, Ser. A 231, 130 (1955).

    Article  ADS  Google Scholar 

  26. S. Tamura, Phys. Rev. B: Condens. Matter 27, 858 (1983).

    Article  ADS  Google Scholar 

  27. I. G. Kuleev and I. I. Kuleev, Phys. Solid State 49(9), 1643 (2007).

    Article  ADS  Google Scholar 

  28. A. P. Zhernov and A. V. Inyushkin, Phys.—Usp. 44(8), 785 (2001); A. P. Zhernov and A. V. Inyushkin, Phys.—Usp. 45 (5), 527 (2002).

    Article  ADS  Google Scholar 

  29. C. Herring, Phys. Rev. 95, 954 (1954).

    Article  ADS  MATH  Google Scholar 

  30. L. Landau and J. Rumer, Phys. Z. Sowjetunion 11, 18 (1937).

    MATH  Google Scholar 

  31. S. Simons, Proc. Phys. Soc., London 82, 401 (1963); S. Simons, Proc. Phys. Soc., London 83, 799 (1963).

    Article  ADS  Google Scholar 

  32. I. G. Kuleyev, I. I. Kuleyev, and I. Yu. Arapova, J. Phys.: Condens. Matter 20, 465201 (2008); I. G. Kuleyev, I. I. Kuleyev, and I. Yu. Arapova, J. Phys.: Condens. Matter 22, 0945403 (2010). Usp. 56 (9), 868 (2013).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Kuleyev.

Additional information

Original Russian Text © I.G. Kuleyev, I.I. Kuleyev, S.M. Bakharev, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 145, No. 2, pp. 292–305.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuleyev, I.G., Kuleyev, I.I. & Bakharev, S.M. Phonon focusing and temperature dependences of the thermal conductivity of silicon nanowires. J. Exp. Theor. Phys. 118, 253–265 (2014). https://doi.org/10.1134/S1063776114020022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114020022

Keywords

Navigation