Skip to main content
Log in

Peculiarities of light propagation in chiral liquid crystal cells in an external electric field

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the propagation of the extraordinary ray in a cell with a chiral liquid crystal at oblique incidence. For a 180° twist cell, we study the dependence of the minimum incidence angle at which the light does not yet pass through the cell on the applied voltage. The orientational structure of a liquid crystal in an external electric field has been calculated by directly minimizing the free energy. This has allowed the ray trajectories and the limiting refraction angles to be determined. The results of our calculations are consistent with the experiment. We show that allowance for the electric field nonuniformity in a chiral system is important for agreement between theory and experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Avendano-Alejo, Opt. Express 13, 2549 (2005).

    Article  ADS  Google Scholar 

  2. Qi Hong, T. X. Wu, and Shin-Tson Wu, Liq. Cryst. 30, 367 (2003).

    Article  Google Scholar 

  3. W. Cai and V. Shalaev, Optical Metamaterials (Springer-Verlag, New York, 2010).

    Book  Google Scholar 

  4. J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals (Princeton University Press, Princeton, New Jersey, United States, 1995).

    MATH  Google Scholar 

  5. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2001).

    Book  Google Scholar 

  6. D. W. Berreman and T. J. Scheffer, Phys. Rev. A: At., Mol., Opt. Phys. 5, 1397 (1971).

    Article  ADS  Google Scholar 

  7. D. W. Berreman, J. Opt. Soc. Am. 62, 502 (1972); D. W. Berreman, J. Opt. Soc. Am. 63, 1374 (1973).

    Article  ADS  Google Scholar 

  8. S. P. Palto, J. Exp. Theor. Phys. 92(4), 552 (2001).

    Article  ADS  Google Scholar 

  9. A. H. Gevorgyan, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 85, 021704 (2012).

    Article  ADS  Google Scholar 

  10. V. A. Belyakov and V. E. Dmitrienko, Sov. Phys. Solid State 15(9), 1811 (1973).

    Google Scholar 

  11. V. E. Dmitrienko and V. A. Belyakov, Sov. Phys. Solid State 15(11), 2213 (1973).

    Google Scholar 

  12. A. Lakhtakia and W. S. Weiglhofer, Microwave Opt. Technol. 12, 245 (1996).

    Article  Google Scholar 

  13. A. Yu. Val’kov, E. V. Aksenova, and V. P. Romanov, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 87, 022508 (2013).

    Article  ADS  Google Scholar 

  14. K. Rokushima and J. Yamakita, J. Opt. Soc. Am. 73, 901 (1983).

    Article  ADS  Google Scholar 

  15. F. Wang and A. Lakhtakia, Opt. Commun. 235, 133 (2004).

    Article  ADS  Google Scholar 

  16. G. Panasyuk, J. Kelly, E. C. Gartland, and D. W. Allender, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 67, 041702 (2003).

    Article  ADS  Google Scholar 

  17. V. Freedericksz and V. Zwetkoff, Phys. Z. Sowjetunion 6, 5 (1934).

    Google Scholar 

  18. M. Warenghem, M. Ismaili, and D. Hector, J. Phys. III 2, 765 (1992).

    Google Scholar 

  19. F. Simoni, F. Bloisi, L. Vicari, M. Warenghem, M. Ismaili, and D. Hector, Europhys. Lett. 21, 189 (1993).

    Article  ADS  Google Scholar 

  20. M. Warenghem, M. Ismaili, F. Simoni, L. Bloisi, and F. Vicari, Mol. Cryst. Liq. Cryst. 251, 61 (1994).

    Article  Google Scholar 

  21. M. Warenghem, D. Louvergneux, and F. Simoni, Mol. Cryst. Liq. Cryst. 282, 235 (1996).

    Article  Google Scholar 

  22. J. A. Rayes and R. F. Rodriguez, Mol. Cryst. Liq. Cryst. 317, 135 (1998).

    Article  Google Scholar 

  23. J. A. Olivares, R. F. Rodriguez, and J. A. Rayes, Opt. Commun. 221, 223 (2003).

    Article  ADS  Google Scholar 

  24. C. I. Mendoza, J. A. Olivares, and J. A. Rayes, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 70, 062701 (2004).

    Article  Google Scholar 

  25. C. I. Mendoza and J. A. Rayes, Appl. Phys Lett. 89, 091912 (2006).

    Article  ADS  Google Scholar 

  26. E. V. Aksenova, A. A. Karetnikov, A. P. Kovshik, V. P. Romanov, and A. Yu. Val’kov, Europhys. Lett. 69, 68 (2005).

    Article  ADS  Google Scholar 

  27. E. V. Aksenova, A. A. Karetnikov, A. P. Kovshik, E. V. Kryukov, and V. P. Romanov, J. Opt. Soc. Am. A 25, 600 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  28. A. A. Karetnikov, N. A. Karetnikov, A. P. Kovshik, E. I. Rjumtsev, E. V. Aksenova, E. V. Kryukov, and V. P. Romanov, Mol. Cryst. Liq. Cryst. 561, 97 (2012).

    Article  Google Scholar 

  29. C. V. Brown and N. J. Mottram, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 68, 031702 (2003).

    Article  ADS  Google Scholar 

  30. M. Škarabot, M. Ravnik, D. Babič, N. Osterman, I. Poberaj, S. Žumer, I. Muševič, A. Nych, U. Ognysta, and V. Nazarenko, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 73, 021705 (2006).

    Article  Google Scholar 

  31. A. A. Smith, C. V. Brown, and N. J. Mottram, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 75, 041704 (2007).

    Article  ADS  Google Scholar 

  32. S. M. Shelestiuk, V. Y. Reshetnyak, and T. J. Sluckin, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 83, 041705 (2011).

    Article  ADS  Google Scholar 

  33. E. A. Babayan, I. A. Budagovsky, S. A. Shvetsov, M. P. Smayev, A. S. Zolot’ko, N. I. Boiko, and M. I. Barnik, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 82, 061705 (2010).

    Article  Google Scholar 

  34. J. Cheng, R. N. Thurston, and D. W. Berreman, J. Appl. Phys. 52, 2576 (1981).

    Google Scholar 

  35. D. W. Berreman and W. R. Heffner, J. Appl. Phys. 52, 3032 (1981).

    Article  ADS  Google Scholar 

  36. R. N. Thurston, J. Appl. Phys. 54, 4966 (1983).

    Article  ADS  Google Scholar 

  37. F. M. Leslie, Mol. Cryst. Liq. Cryst. 12, 57 (1970).

    Article  Google Scholar 

  38. R. N. Thurston and D. W. Berreman, J. Appl. Phys. 52, 508 (1981).

    Article  ADS  Google Scholar 

  39. R. Hiring, W. Funk, H. R. Trebin, M. Schmidt, and H. Schmiedel, J. Appl. Phys. 70, 4211 (1991).

    Article  ADS  Google Scholar 

  40. A. A. Karetnikov, N. A. Karetnikov, A. P. Kovshik, E. I. Ryumtsev, E. V. Aksenova, E. V. Kryukov, and V. P. Romanov, Opt. Spectrosc. 108(6), 947 (2010).

    Article  ADS  Google Scholar 

  41. J. Mathews and R. L. Walker, Mathematical Methods of Physics (W. A. Benjamin, New York, 1970; Atomizdat, Moscow, 1972).

    Google Scholar 

  42. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Volume 8: Electrodynamics of Continuous Media (Butterworth-Heinemann, Oxford, 1993; Nauka, Moscow, 1992).

    Google Scholar 

  43. A. A. Karetnikov, N. A. Karetnikov, A. P. Kovshik, and E. I. Ryumtsev, Opt. Spectrosc. 103(4), 646 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Aksenova.

Additional information

Original Russian Text © E.V. Aksenova, B.B. Divinskii, A.A. Karetnikov, N.A. Karetnikov, A.P. Kovshik, E.V. Kryukov, V.P. Romanov, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 145, No. 2, pp. 369–382.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aksenova, E.V., Divinskii, B.B., Karetnikov, A.A. et al. Peculiarities of light propagation in chiral liquid crystal cells in an external electric field. J. Exp. Theor. Phys. 118, 323–332 (2014). https://doi.org/10.1134/S1063776114010221

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114010221

Keywords

Navigation