Ab initio study of the formation of vacancy and hydrogen-vacancy complexes in palladium and its hydride

Abstract

We report on the results of ab initio calculations of vacancy and hydrogen-vacancy complexes in palladium and palladium hydride. Comparative analysis of the energies of the formation of defect complexes in palladium and its hydride has revealed that the formation of vacancy clusters is easier in the palladium hydride structure. Investigation of hydrogen-vacancy complexes in bulk crystalline palladium has shown that a hydrogen atom and a vacancy interact to form a stable hydrogen-vacancy (H-Vac) defect complex with a binding energy of E b = −0.21 eV. To investigate the initial stage in the formation of hydrogen-vacancy complexes (H n -Vac m ), we consider the clusterization of defects into clusters containing H-Vac and H2-Vac complexes as a structural unit. It is found that hydrogen-vacancy complexes form 2D defect structures in palladium in the (100)-type planes.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    V. Guther and A. Otto, J. Alloys Compd. 293–295, 889 (1999).

    Article  Google Scholar 

  2. 2.

    G. Alefeld and J. Volkl, Hydrogen in Metals (Springer-Verlag, Heidelberg, Germany, 1978; Mir, Moscow, 1981), Vols. 1, 2.

    Google Scholar 

  3. 3.

    Y. Fukai, The Metal-Hydrogen System: Basic Bulk Properties (Springer-Verlag, Berlin, 1967).

    Google Scholar 

  4. 4.

    F. A. Lewis, The Palladium Hydrogen System (Academic, New York, 1993).

    Google Scholar 

  5. 5.

    O. B. Christensen, P. D. Ditlevsen, K. W. Jacobsen, P. Stoltze, and J. K. Norskov, Phys. Rev. B: Condens. Matter 40, 1993 (1989).

    ADS  Article  Google Scholar 

  6. 6.

    A. Gross and M. Scheffler, Phys. Rev. B: Condens. Matter 57, 2493 (1998).

    ADS  Article  Google Scholar 

  7. 7.

    D. Wetzig, R. Dopheide, M. Rutkowski, R. David, and H. Zacharias, Phys. Rev. Lett. 76, 463 (1996).

    ADS  Article  Google Scholar 

  8. 8.

    X. Ke and G. J. Kramer, Phys. Rev. B: Condens. Matter 66, 184304 (2002).

    ADS  Article  Google Scholar 

  9. 9.

    X. Ke, G. J. Kramer, and O. M. Lovvik, J. Phys.: Condens. Matter 16, 6267 (2004).

    ADS  Google Scholar 

  10. 10.

    R. Caputo and A. Alavi, Mol. Phys. 101, 1781 (2003).

    ADS  Article  Google Scholar 

  11. 11.

    Y. Fukai and N. Okuma, Phys. Rev. Lett. 73, 1640 (1994).

    ADS  Article  Google Scholar 

  12. 12.

    Y. Fukai, Y. Ishii, Y. Goto, and K. Watanabe, J. Alloys Compd. 313, 121 (2000).

    Article  Google Scholar 

  13. 13.

    S. Harada, S. Yokota, Y. Ishii, Y. Shizuku, M. Kanazawa, and Y. Fukai, J. Alloys Compd. 404–406, 247 (2005).

    Article  Google Scholar 

  14. 14.

    Y. Fukai and H. Sugimoto, J. Phys.: Condens. Matter 19, 436201 (2007).

    ADS  Google Scholar 

  15. 15.

    Y. Fukai, Y. Shizuki, and Y. Kurokawa, J. Alloys Compd. 329, 195 (2001).

    Google Scholar 

  16. 16.

    Y. Fukai, in Computer Aided Innovation of New Materials II, Ed. by M. Doyama, J. Kihara, M. Tanaka, and R. Yamamoto (Elsevier, Amsterdam, The Netherlands, 1993), p. 451.

  17. 17.

    D. S. dos Santos, S. Miraglia, and D. Fruchart, J. Alloys Compd. 291, L1 (1999).

    Article  Google Scholar 

  18. 18.

    Y. Fukai, M. Yamakata, and T. Yagi, Z. Phys. Chem. 179, 119 (1993).

    Article  Google Scholar 

  19. 19.

    S. Miraglia, D. Fruchart, E. K. Hlil, S. S. M. Tavares, and D. Dos Santos, J. Alloys Compd. 317–318, 77 (2001).

    Article  Google Scholar 

  20. 20.

    V. M. Avdyukhina, A. A. Anishchenko, A. A. Katsnel’son, and G. P. Revkevich, Phys. Solid State 46(2), 265 (2004).

    ADS  Article  Google Scholar 

  21. 21.

    G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter 59, 1758 (1999).

    ADS  Article  Google Scholar 

  22. 22.

    G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter 48, 13115 (1993).

    ADS  Article  Google Scholar 

  23. 23.

    Vl. V. Voevodin, S. A. Zhumatii, and S. I. Sobolev, Otkrytye Sist., No. 7 (2012).

    Google Scholar 

  24. 24.

    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1971).

    Google Scholar 

  25. 25.

    C. Zhang and A. Alavi, J. Am. Chem. Soc. 127(27), 9808 (2005).

    Article  Google Scholar 

  26. 26.

    H. Shultz and P. Ehrhart, in Landolt-Bönnstein, New Series, Group III (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  27. 27.

    Y. Kraftmakher, Phys. Rep. 299, 79 (1998).

    ADS  Article  Google Scholar 

  28. 28.

    Y. Fukai, J. Alloys Compd. 356–357, 263 (2003).

    Article  Google Scholar 

  29. 29.

    L. Yu. Nemirovich-Danchenko, O. Yu. Vekilova, D. I. Bazhanov, S. V. Eremeev, S. E. Kul’kova, Ts. M. Khu, Yu. Zh. Li, and Yu. L. Khao, Fundam. Probl. Sovrem. Materialoved. 3(1), 17 (2006).

    Google Scholar 

  30. 30.

    S. M. Myers, M. I. Baskes, and H. K. Birnbaum, Rev. Mod. Phys. 64, 559 (1992).

    ADS  Article  Google Scholar 

  31. 31.

    V. M. Avdyukhina, A. A. Anishchenko, A. A. Katsnel’son, and G. P. Revkevich, Phys. Solid State 46(2), 265 (2004).

    ADS  Article  Google Scholar 

  32. 32.

    O. Yu. Vekilova, D. I. Bazhanov, S. I. Simak, and I. A. Abrikosov, Phys. Rev. B: Condens. Matter 80, 024101 (2009).

    ADS  Article  Google Scholar 

  33. 33.

    Y. Tateyama and T. Ohno, Phys. Rev. B: Condens. Matter 67, 174105 (2003).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. A. Supryadkina.

Additional information

Original Russian Text © I.A. Supryadkina, D.I. Bazhanov, A.S. Ilyushin, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 145, No. 1, pp. 93–100.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Supryadkina, I.A., Bazhanov, D.I. & Ilyushin, A.S. Ab initio study of the formation of vacancy and hydrogen-vacancy complexes in palladium and its hydride. J. Exp. Theor. Phys. 118, 80–86 (2014). https://doi.org/10.1134/S106377611401018X

Download citation

Keywords

  • Palladium
  • Hydride
  • Formation Energy
  • Mutual Arrangement
  • Defect Complex