Skip to main content
Log in

Effect of Eu doping and partial oxygen isotope substitution on magnetic phase transitions in (Pr1 − y Eu y )0.7Ca0.3CoO3 cobaltites

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We study experimentally and theoretically the effect of Eu doping and partial oxygen isotope substitution on the transport and magnetic characteristics and spin-state transitions in (Pr1 − y Eu y )0.7Ca0.3CoO3 cobaltites. The Eu doping level y is chosen in the range of the phase diagram near the crossover between the ferromagnetic and spin-state transitions (0.10 < y < 0.20). We prepared a series of samples with different degrees of enrichment by the heavy oxygen isotope 18O, namely, with 90, 67, 43, 17, and 0% of 18O. Based on the measurements of the ac magnetic susceptibility χ(T) and electrical resistivity ρ(T), we analyze the evolution of the sample properties with a change of the Eu and 18O content. It is demonstrated that the effect of increasing the 18O content on the system is similar to that of increasing the Eu content. The band structure calculations of the energy gap between t 2g and e g bands including the renormalization of this gap due to the electron-phonon interaction reveals the physical mechanisms underlying this similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Babushkina, L. M. Belova, O. Yu. Gorbenko, A. R. Kaul, A. A. Bosak, V. I. Ozhogin, and K. I. Kugel, Nature (London) 391, 159 (1998).

    Article  ADS  Google Scholar 

  2. J. B. Goodenough and P. M. Raccah, J. Appl. Phys. 36, 1031 (1965).

    Article  ADS  Google Scholar 

  3. K. Asai, A. Yoneda, O. Yokokura, J. M. Tranquada, G. Shirane, and K. Kohn, J. Phys. Soc. Jpn. 67, 290 (1998).

    Article  ADS  Google Scholar 

  4. T. Saitoh, T. Mizokawa, A. Fujimori, M. Abbate, Y. Takeda, and M. Takano, Phys. Rev. B: Condens. Matter 55, 4257 (1997).

    Article  ADS  Google Scholar 

  5. Y. Tokura, Y. Okimoto, S. Yamaguchi, H. Taniguchi, T. Kimura, and H. Takagi, Phys. Rev. B: Condens. Matter 58, R1699 (1998).

    Article  ADS  Google Scholar 

  6. M. A. Korotin, S. Y. Ezhov, I. V. Solovyev, V. I. Anisimov, D. I. Khomskii, and G. A. Sawatzky, Phys. Rev. B: Condens. Matter 54, 5309 (1996).

    Article  ADS  Google Scholar 

  7. K. Berggold, M. Kriener, P. Becker, M. Benomar, M. Reuther, C. Zobel, and T. Lorenz, Phys. Rev. B: Condens. Matter 78, 134402 (2008).

    Article  ADS  Google Scholar 

  8. N. B. Ivanova, S. G. Ovchinnikov, M. M. Korshunov, I. M. Eremin, and N. V. Kazak, Phys.-Usp. 52(8), 789 (2009).

    Article  ADS  Google Scholar 

  9. R. Ganguli, A. Maignan, C. Martin, M. Hervieu, and B. Raveau, J. Phys.: Condens. Matter 14, 8595 (2002).

    ADS  Google Scholar 

  10. J. Wu and C. Leighton, Phys. Rev. B: Condens. Matter 67, 174408 (2003).

    Article  ADS  Google Scholar 

  11. D. Phelan, Despina Louca, and K. Kamazawa, Phys. Rev. Lett. 97, 235501 (2006).

    Article  ADS  Google Scholar 

  12. A. Podlesnyak, M. Russina, A. Furrer, A. Alfonsov, E. Vavilova, V. Kataev, B. Büchner, Th. Strässle, E. Pomjakushina, K. Conder, and D. I. Khomskii, Phys. Rev. Lett. 101, 247603 (2008).

    Article  ADS  Google Scholar 

  13. A. O. Sboychakov, K. I. Kugel, A. L. Rakhmanov, and D. I. Khomskii, Phys. Rev. B: Condens. Matter 80, 024423 (2009).

    Article  ADS  Google Scholar 

  14. J. Yu, Despina Louca, D. Phelan, K. Tomiyasu, K. Horigane, and K. Yamada, Phys. Rev. B: Condens. Matter 80, 052402 (2009).

    Article  ADS  Google Scholar 

  15. S. El-Khatib, Shameek Bose, C. He, J. Kuplic, M. Laver, J. A. Borchers, Q. Huang, J. W. Lynn, J. F. Mitchell, and C. Leighton, Phys. Rev. B: Condens. Matter 82, 100411 (2010).

    Article  ADS  Google Scholar 

  16. A. Podlesnyak, G. Ehlers, and M. Frontzek, Phys. Rev. B: Condens. Matter 83, 134430 (2011).

    Article  ADS  Google Scholar 

  17. A. V. Kalinov, O. Yu. Gorbenko, A. N. Taldenkov, J. Rohrkamp, O. Heyer, S. Jodlauk, N. A. Babushkina, L. M. Fisher, A. R. Kaul, A. A. Kamenev, T. G. Kuzmova, D. I. Khomskii, K. Kugel, and T. Lorenz, Phys. Rev. B: Condens. Matter 81, 134427 (2010).

    Article  ADS  Google Scholar 

  18. N. A. Babushkina, A. N. Taldenkov, L. M. Belova, E. A. Chistotina, O. Yu. Gorbenko, A. R. Kaul, K. I. Kugel, and D. I. Khomskii, Phys. Rev. B: Condens. Matter 62, R6081 (2000).

    Article  ADS  Google Scholar 

  19. O. Yu. Gorbenko, O. V. Melnikov, A. R. Kaul, A. M. Balagurov, S. N. Bushmeleva, L. I. Koroleva, and R. V. Demin, Mater. Sci. Eng., B 116(1), 64 (2005).

    Article  Google Scholar 

  20. K. Kní ek, J. Hejtmánek, Z. Jirák, P. Tomeš, P. Henry, and G. André, Phys. Rev. B: Condens. Matter 79, 134103 (2009).

    Article  ADS  Google Scholar 

  21. J. Baier, S. Jodlauk, M. Kriener, A. Reichl, C. Zobel, H. Kierspel, A. Freimuth, and T. Lorenz, Phys. Rev. B: Condens. Matter 71, 014443 (2005).

    Article  ADS  Google Scholar 

  22. O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).

    Article  ADS  Google Scholar 

  23. I. A. Nekrasov, S. V. Streltsov, M. A. Korotin, and V. I. Anisimov, Phys. Rev. B: Condens. Matter 68, 235113 (2003).

    Article  ADS  Google Scholar 

  24. S. V. Streltsov and N. A. Skorikov, Phys. Rev. B: Condens. Matter 83, 214407 (2011).

    Article  ADS  Google Scholar 

  25. M. A. Korotin, S. Yu. Ezhov, I. V. Solovyev, V. I. Anisimov, D. I. Khomskii, and G. A. Sawatzky, Phys. Rev. B: Condens. Matter 54, 5309 (1996).

    Article  ADS  Google Scholar 

  26. K. Kní ek, Z. Jirák, J. Hejtmánek, P. Novák, and W. Ku, Phys. Rev. B: Condens. Matter 79, 014430 (2009).

    Article  Google Scholar 

  27. Y. Ren, J.-Q. Yan, J.-S. Zhou, J. B. Goodenough, J. D. Jorgensen, S. Short, Th. Proffen, S. Chang, and R. J. McQueeney, Phys. Rev. B: Condens. Matter 84, 214409 (2011).

    Article  ADS  Google Scholar 

  28. M. W. Haverkort, Z. Hu, J. C. Cezar, T. Burnus, H. Hartmann, M. Reuther, C. Zobel, T. Lorenz, A. Tanaka, N. B. Brookes, H. H. Hsieh, H.-J. Lin, C. T. Chen, and L. H. Tjeng, Phys. Rev. Lett. 97, 176405 (2006).

    Article  ADS  Google Scholar 

  29. K. V. Lamonova, E. S. Zhitlukhina, R. Yu. Babkin, S. M. Orel, S. G. Ovchinnikov, and Yu. G. Pashkevich, J. Phys. Chem. A 115, 13596 (2011).

    Article  Google Scholar 

  30. S. V. Streltsov, A. S. Mylnikova, A. O. Shorikov, Z. V. Pchelkina, D. I. Khomskii, and V. I. Anisimov, Phys. Rev. B: Condens. Matter 71, 245114 (2005).

    Article  ADS  Google Scholar 

  31. N. Babushkina, A. Taldenkov, A. Kalinov, L. M. Fisher, O. Yu. Gorbenko, T. Lorenz, D. I. Khomskii, and K. I. Kugel’, J. Exp. Theor. Phys. 111(2), 189 (2010).

    Article  ADS  Google Scholar 

  32. N. A. Babushkina, L. M. Belova, V. I. Ozhogin, O. Yu. Gorbenko, A. R. Kaul, A. A. Bosak, D. I. Khomskii, and K. I. Kugel, J. Appl. Phys. 83, 7369 (1998).

    Article  ADS  Google Scholar 

  33. W. Harrison, Elementary Electronic Structure (World Scientific, Singapore, 1999).

    Book  Google Scholar 

  34. O. Andersen and O. K. Jepsen, Physica B (Amsterdam) 91, 317 (1977).

    Article  ADS  Google Scholar 

  35. J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

    Article  ADS  MATH  Google Scholar 

  36. J. Reissland, The Physics of Phonons (Wiley, New York, 1973).

    Google Scholar 

  37. S. Stølen, F. Grønvold, H. Brinks, T. Atake, and H. Mori, Phys. Rev. B: Condens. Matter 55, 14103 (1997).

    Article  ADS  Google Scholar 

  38. C. Ballhausen, Introduction to Ligand Field Theory (McGraw-Hill, New York, 1962).

    MATH  Google Scholar 

  39. H. Sugano, S. Tanabe, and Y. Kamimura, Multiplets of Transition-Metal Ions in Crystals (Academic, New York, 1970).

    Google Scholar 

  40. A. Ushakov, S. V. Streltsov, and D. I. Khomskii, J. Phys.: Condens. Matter 23, 445601 (2011).

    ADS  Google Scholar 

  41. H. Skiver, The LMTO Method (Springer-Verlag, Berlin, 1984).

    Book  Google Scholar 

  42. A. Chainani, M. Mathew, and D. D. Sarma, Phys. Rev. B: Condens. Matter 46, 9976 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Babushkina.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babushkina, N.A., Taldenkov, A.N., Streltsov, S.V. et al. Effect of Eu doping and partial oxygen isotope substitution on magnetic phase transitions in (Pr1 − y Eu y )0.7Ca0.3CoO3 cobaltites. J. Exp. Theor. Phys. 118, 266–278 (2014). https://doi.org/10.1134/S1063776114010026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114010026

Keywords

Navigation