Skip to main content
Log in

Optical Tamm states at the interface between a photonic crystal and a nanocomposite with resonance dispersion

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Optical Tamm states localized at the edges of a photonic crystal bounded from one or both sides by a nanocomposite have been studied. The nanocomposite consists of metallic nanoinclusions, which have a spherical or orientationally ordered spheroidal shape and are dispersed in a transparent matrix, and is characterized by the resonant effective permittivity. The transmission, reflection, and absorption spectra have been calculated for waves with longitudinal and transverse polarizations in such structures at the normal incidence of light. The spectral manifestation of Tamm states that is due to the existence of negative values of the real part of the effective permittivity has been analyzed for the visible spectral range. It has been established that the characteristics of Tamm states localized at the edge of the photonic crystal depend strongly both on the concentration of nanoballs in the nanocomposite film and on its thickness. Modes formed by two coupled Tamm plasmon polaritons localized at the edges of the photonic crystal adjacent to two nanocomposite layers have been examined. It has been shown that, in the case of the anisotropic nanocomposite layer adjacent to the photonic crystal, each of two orthogonal polarizations of the incident wave corresponds to a specific frequency of the Tamm state localized at the edge; owing to this property, the transmission spectra of such a structure are polarization sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, New Jersey, United States, 2008).

    Google Scholar 

  2. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2004).

    Google Scholar 

  3. K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonics Crystals: Advances in Design, Fabrication, and Characterization (Wiley, Weinheim, 2004).

    Book  Google Scholar 

  4. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

    Google Scholar 

  5. A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, Phys.—Usp. 53(3), 243 (2010).

    Article  ADS  Google Scholar 

  6. T. W. Ebbesen, J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London) 391, 667 (1998).

    Article  ADS  Google Scholar 

  7. F. G. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82, 729 (2010).

    Article  ADS  Google Scholar 

  8. P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, Opt. Express 19, 22743 (2011).

    Article  ADS  Google Scholar 

  9. P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, J. Exp. Theor. Phys. 115(2), 185 (2012).

    Article  ADS  Google Scholar 

  10. I. V. Treshin, V. V. Klimov, P. N. Melentiev, and V. I. Balykin, arXiv:1305.4340v1 [physics.optics].

  11. M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, Appl. Phys. Lett. 92, 251112 (2008).

    Article  ADS  Google Scholar 

  12. W. L. Zhang and S. F. Yu, Opt. Commun. 283, 2622 (2010).

    Article  ADS  Google Scholar 

  13. T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, Phys. Rev. Lett. 101, 113902 (2008).

    Article  ADS  Google Scholar 

  14. H. Zhou, G. Yang, K. Wang, H. Long, and P. Lu, Opt. Lett. 35, 4112 (2010).

    Article  ADS  Google Scholar 

  15. A. Kavokin, I. Shelykh, and G. Malpuech, Appl. Phys. Lett. 87, 261105 (2005).

    Article  ADS  Google Scholar 

  16. I. Iorsh, P. V. Panicheva, I. A. Slovinskii, and M. A. Kaliteevski, Tech. Phys. Lett. 38(4), 351 (2012).

    Article  ADS  Google Scholar 

  17. S. G. Tikhodeev and N. A. Gippius, Phys.—Usp. 52(9), 945 (2009).

    ADS  Google Scholar 

  18. P. N. D’yachenko and Yu. V. Miklyaev, Komp’yut. Opt. 31, 31 (2007).

    Google Scholar 

  19. S. Ya. Vetrov, A. Yu. Avdeeva, and I. V. Timofeev, J. Exp. Theor. Phys. 113(5), 755 (2011).

    Article  ADS  Google Scholar 

  20. S. Ya. Vetrov, A. Yu. Avdeeva, R. G. Bikbaev, and I. V. Timofeev, Opt. Spectrosc. 113(5), 517 (2012).

    Article  ADS  Google Scholar 

  21. S. G. Moiseev, V. A. Ostatochnikov, and D. I. Sementsov, Kvantovaya Elektron. (Moscow) 42, 557 (2012).

    Article  Google Scholar 

  22. A. Oraevskii and I. Protsenko, Kvantovaya Elektron. (Moscow) 31, 252 (2001).

    Article  Google Scholar 

  23. A. Sihvola, Electromagnetic Mixing Formulas and Applications (Institution of Engineering and Technology, London, 2008).

    Google Scholar 

  24. L. A. Golovan, V. Yu. Timoshenko, and P. K. Kashkarov, Phys.—Usp. 50(6), 595 (2007).

    Article  ADS  Google Scholar 

  25. P. Yeh, J. Opt. Soc. Am. 69, 742 (1979).

    Article  ADS  Google Scholar 

  26. S. G. Moiseev, Opt. Spectrosc. 111(2), 233 (2011).

    Article  ADS  Google Scholar 

  27. D. Wang, S. Guo, and S. Yin, Opt. Eng. 42, 3585 (2003).

    Article  ADS  Google Scholar 

  28. S. D. Stookey and R. J. Aranjo, J. Appl. Opt. 7, 777 (1968).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Bikbaev.

Additional information

Original Russian Text © S.Ya. Vetrov, R.G. Bikbaev, I.V. Timofeev, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 144, No. 6, pp. 1129–1139.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vetrov, S.Y., Bikbaev, R.G. & Timofeev, I.V. Optical Tamm states at the interface between a photonic crystal and a nanocomposite with resonance dispersion. J. Exp. Theor. Phys. 117, 988–998 (2013). https://doi.org/10.1134/S1063776113140185

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776113140185

Keywords

Navigation