Skip to main content
Log in

Disorder and pseudogap in strongly correlated systems: Phase diagram in the DMFT + Σ approach

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The influence of disorder and pseudogap fluctuations on the Mott insulator-metal transition in strongly correlated systems has been studied in the framework of the generalized dynamic mean field theory (DMFT + Σ approach). Using the results of investigations of the density of states (DOS) and optical conductivity, a phase diagram (disorder-Hubbard interaction-temperature) is constructed for the paramagnetic Anderson-Hubbard model, which allows both the effects of strong electron correlations and the influence of strong disorder to be considered. Strong correlations are described using the DMFT, while a strong disorder is described using a generalized self-consistent theory of localization. The DOS and optical conductivity of the paramagnetic Hubbard model have been studied in a pseudogap state caused by antiferromagnetic spin (or charge) short-range order fluctuations with a finite correlation length, which have been modeled by a static Gaussian random field. The effect of a pseudogap on the Mott insulator-metal transition has been studied. It is established that, in both cases, the static Gaussian random field (related to the disorder or pseudogap fluctuations) leads to suppression of the Mott transition, broadening of the coexistence region of the insulator and metal phases, and an increase in the critical temperature at which the coexistence region disappears.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Th. Pruschke, M. Jarrell, and J. K. Freericks, Adv. Phys. 44, 187 (1995).

    Article  ADS  Google Scholar 

  2. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  3. D. Vollhardt, AIP Conf. Proc. 1297, 339 (2010). arXiv:1004.5069.

    Article  ADS  Google Scholar 

  4. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, JETP Lett. 82(4), 198 (2005). arXiv:condmat//0506215.

    Article  ADS  Google Scholar 

  5. M. V. Sadovskii, I. A. Nekrasov, E. Z. Kuchinskii, Th. Prushke, and V. I. Anisimov, Phys. Rev. B: Condens. Matter 72, 155105 (2005). arXiv:condmat/0508585.

    Article  ADS  Google Scholar 

  6. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Low Temp. Phys. 32(4–5), 398 (2006). arXiv:condmat/0510376.

    Article  ADS  Google Scholar 

  7. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Phys.-Usp. 55(4), 325 (2012). arXiv:1109.2305.

    Article  ADS  Google Scholar 

  8. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Phys. Rev. B: Condens. Matter 75, 115102 (2007). arXiv:cond-mat//0609404.

    Article  ADS  Google Scholar 

  9. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, JETP 106(3), 581 (2008). arXiv:0706.2618.

    Article  ADS  Google Scholar 

  10. E. Z. Kuchinskii, N. A. Kuleeva, I. A. Nekrasov, and M. V. Sadovskii, JETP 110(2), 325 (2010). arXiv:0908.3747.

    Article  ADS  Google Scholar 

  11. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Phys. Rev. B: Condens. Matter 80, 115124 (2009). arXiv:0906.3865.

    Article  ADS  Google Scholar 

  12. R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 60, 395 (2008).

    Article  ADS  Google Scholar 

  13. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985); D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66, 261 (1994).

    Google Scholar 

  14. N. F. Mott, Proc. Phys. Soc., London, Sect. A 62, 416 (1949); N. F. Mott, Metal Insulator Transitions, 2nd ed. (Taylor and Francis, London, 1990).

    Article  ADS  Google Scholar 

  15. P. W. Anderson, Phys. Rev. 109, 1492 (1958).

    Article  ADS  Google Scholar 

  16. K. Byczuk, W. Hofstetter, and D. Vollhardt, Phys. Rev. Lett. 94, 056404 (2005).

    Article  ADS  Google Scholar 

  17. V. Dobrosavljevi and G. Kotliar, Phys. Rev. Lett. 78, 3943 (1997).

    Article  ADS  Google Scholar 

  18. V. Dobrosavljevi, A. A. Pastor, and B. K. Nikoli, Europhys. Lett. 62, 76 (2003).

    Article  ADS  Google Scholar 

  19. D. Vollhardt and P. Wölfle, Phys. Rev. B: Condens. Matter 22, 4666 (1980); D. Vollhardt and P. Wölfle, Phys. Rev. Lett. 48, 699 (1982); D. Vollhardt and P. Wölfle, in Anderson Localization, Ed. by Y. Nagaoka and H. Fukuyama, in Springer Series in Solid State Science (Springer-Verlag, Berlin, 1982), p. 26.

    Article  ADS  Google Scholar 

  20. M. V. Sadovskii, Sov. Sci. Rev., Sect. A 7, 1 (1986); A. V. Myasnikov, and M. V. Sadovskii, Sov. Phys. Solid State 24 (12), 2033 (1982); E. A. Kotov and M. V. Sadovskii, Z. Phys. B: Condens. Matter 51, 17 (1983).

    Google Scholar 

  21. R. Bulla, Phys. Rev. Lett. 83, 136 (1999); R. Bulla, T. A. Costi, and D. Vollhardt, Phys. Rev. B: Condens. Matter 64, 045103 (2001).

    Article  ADS  Google Scholar 

  22. M. V. Sadovskii, Phys.-Usp. 44(5), 515 (2001). arXiv:cond-mat/0102111; M. V. Sadovskii, in Strings, Branes, Lattices, Networks, Pseudogaps, and Dust: Proceedings of the I. E. Tamm Seminar (Nauchnyi Mir, Moscow, 2007), p. 357 [in Russian]. arXiv:condmat/0408489.

    Article  MathSciNet  ADS  Google Scholar 

  23. J. Schmalian, D. Pines, and B. Stojkovic, Phys. Rev. Lett. 80, 3839 (1998). arXiv:cond-mat/9804129; J. Schmalian, D. Pines, and B. Stojkovic, Phys. Rev. B 60, 667 (1999).

    Article  ADS  Google Scholar 

  24. E. Z. Kuchinskii and M. V. Sadovskii, JETP 88(5), 968 (1999). arXiv:cond-mat/9808321.

    Article  ADS  Google Scholar 

  25. M. V. Sadovskii and N. A. Strigina, JETP 95(3), 526 (2002). arXiv:cond-mat/0203479.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Z. Kuchinskii.

Additional information

Original Russian Text © N.A. Kuleeva, E.Z. Kuchinskii, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 143, No. 6, pp. 1192–1201.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuleeva, N.A., Kuchinskii, E.Z. Disorder and pseudogap in strongly correlated systems: Phase diagram in the DMFT + Σ approach. J. Exp. Theor. Phys. 116, 1027–1035 (2013). https://doi.org/10.1134/S1063776113060198

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776113060198

Keywords

Navigation