Strongly correlated quantum spin liquid in herbertsmithite

Electronic Properties of Solid

Abstract

Strongly correlated Fermi systems are among the most intriguing and fundamental systems in physics. We show that the herbertsmithite ZnCu3(OH)6Cl2 can be regarded as a new type of strongly correlated electrical insulator that possesses properties of heavy-fermion metals with one exception: it resists the flow of electric charge. We demonstrate that herbertsmithite’s low-temperature properties are defined by a strongly correlated quantum spin liquid made with hypothetic particles such as fermionic spinons that carry spin 1/2 and no charge. Our calculations of its thermodynamic and relaxation properties are in good agreement with recent experimental facts and allow us to reveal their scaling behavior, which strongly resembles that observed in heavy-fermion metals. Analysis of the dynamic magnetic susceptibility of strongly correlated Fermi systems suggests that there exist at least two types of its scaling.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. R. Shaginyan, M. Ya. Amusia, A. Z. Msezane, and K. G. Popov, Phys. Rep. 492, 31 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    H. V. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    L. Balents, Nature (London) 464, 199 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    M. P. Shores, E. A. Nytko, B. M. Bartlett, and D. G. Nocera, J. Amer. Chem. Soc. 127, 13462 (2005).CrossRefGoogle Scholar
  5. 5.
    J. S. Helton, K. Matan, M. P. Shores, E. A. Nytko, B. M. Bartlett, Y. Yoshida, Y. Takano, A. Suslov, Y. Qiu, J.-H. Chung, D. G. Nocera, and Y. S. Lee, Phys. Rev. Lett. 98(10), 107204 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    M. A. de Vries, K. V. Kamenev, W. A. Kockelmann, J. Sanchez-Benitez, and A. Harrison, Phys. Rev. Lett. 100(15), 157205 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    J. S. Helton, K. Matan, M. P. Shores, E. A. Nytko, B.M. Bartlett, Y. Qiu, D. G. Nocera, and Y. S. Lee, Phys. Rev. Lett. 104(14), 147201 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    T. H. Han, J. S. Helton, S. Chu, A. Prodi, D. K. Singh, C. Mazzoli, P. Müller, D. G. Nocera, and Y. S. Lee, Phys. Rev. B: Condens. Matter 83(10), 100402(R) (2011).ADSCrossRefGoogle Scholar
  9. 9.
    F. Bert and P. Mendels, J. Phys. Soc. Jpn. 79, 011001 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    F. Mila, Phys. Rev. Lett. 81, 2356 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    S. S. Lee and P. A. Lee, Phys. Rev. Lett. 95, 036403 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Ran, M. Hermele, P. A. Lee, and X. G. Wen, Phys. Rev. Lett. 98, 117205 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    T. Han, S. Chu, and Y. S. Lee, Phys. Rev. Lett. 108, 157202 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    V. R. Shaginyan, A. Z. Msezane, and K. G. Popov, Phys. Rev. B: Condens. Matter 84, 060401(R) (2011).ADSCrossRefGoogle Scholar
  15. 15.
    V. R. Shaginyan, A. Z. Msezane, K. G. Popov, G. S. Japaridze, and V. A. Stephanovich, Europhys. Lett. 97(5), 56001 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    V. R. Shaginyan, A. Z. Msezane, K. G. Popov, and V. A. Khodel, Phys. Lett. A 376, 2622 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    D. Green, L. Santos, and C. Chamon, Phys. Rev. B: Condens. Matter 82, 075104 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    T. T. Heikkilä, N. B. Kopnin, and G. E. Volovik, JETP Lett. 94, 233 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    L. D. Landau, Sov. Phys. JETP 3, 920 (1956).Google Scholar
  20. 20.
    J. W. Clark, V. A. Khodel, and M. V. Zverev, Phys. Rev. B: Condens. Matter 71, 012401 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    V. A. Khodel, J. W. Clark, and M. V. Zverev, Phys. Rev. B: Condens. Matter 78, 075120 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    V. R. Shaginyan, K. G. Popov, V. A. Stephanovich, V. I. Fomichev, and E. V. Kirichenko, Europhys. Lett. 93(1), 17008 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    D. Pines and P. Noziéres, Theory of Quantum Liquids (Benjamin, New York, 1966).Google Scholar
  24. 24.
    M. Pfitzner and P. Wolfle, Phys. Rev. B: Condens. Matter 33, 2003 (1986).ADSCrossRefGoogle Scholar
  25. 25.
    D. Vollhardt, P. Wölfle, and P. W. Anderson, Phys. Rev. B: Condens. Matter 35, 6703 (1987).ADSCrossRefGoogle Scholar
  26. 26.
    D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Benjamin, Benjamin, Reading, Massachusetts, United States, 1975).Google Scholar
  27. 27.
    P. Gegenwart, Y. Tokiwa, T. Westerkamp, F. Weickert, J. Custers, J. Ferstl, C. Krellner, C. Geibel, P. Kerschl, K.-H. Müller, and F. Steglich, New J. Phys. 8(9), 171 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990).ADSGoogle Scholar
  29. 29.
    W. Knafo, S. Raymond, J. Flouquet, B. Fåk, M. A. Adams, P. Haen, F. Lapierre, S. Yates, and P. Lejay, Phys. Rev. B: Condens. Matter 70(17), 174401 (2004).ADSCrossRefGoogle Scholar
  30. 30.
    C. Stock, C. Broholm, F. Demmel, J. Van Duijn, J. W. Taylor, H. J. Kang, R. Hu, and C. Petrovic, Phys. Rev. Lett. 109(12), 127201 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. R. Shaginyan
    • 1
  • K. G. Popov
    • 2
  • V. A. Khodel
    • 3
    • 4
  1. 1.Petersburg Nuclear Physics InstituteGatchinaRussia
  2. 2.Komi Science CenterUral Branch of Russian Academy of SciencesSyktyvkarRussia
  3. 3.Russian Research Centre Kurchatov InstituteMoscowRussia
  4. 4.McDonnell Center for the Space Sciences and Department of PhysicsWashington UniversitySt. LouisUSA

Personalised recommendations