Skip to main content
Log in

Use of radiation effects for a controlled change in the chemical composition and properties of materials by intentional addition or substitution of atoms of a certain kind

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

This study is a continuation of works [1–12] dealing with the field developed by the authors, namely, to widen the possibilities of radiation methods for a controlled change in the atomic composition and properties of thin-film materials. The effects under study serve as the basis for the following two methods: selective atom binding and selective atom substitution. Such changes in the atomic composition are induced by irradiation by mixed beams consisting of protons and other ions, the energy of which is sufficient for target atom displacements. The obtained experimental data demonstrate that the changes in the chemical composition of thin-film materials during irradiation by an ion beam of a complex composition take place according to mechanisms that differ radically from the well-known mechanisms controlling the corresponding chemical reactions in these materials. These radical changes are shown to be mainly caused by the accelerated ioninduced atomic displacements in an irradiated material during irradiation; that is, they have a purely radiation nature. The possibilities of the new methods for creating composite structures consisting of regions with a locally changed chemical composition and properties are demonstrated for a wide class of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Gurovich, D. I. Dolgii, E. A. Kuleshova, E. P. Velikhov, E. D. Ol’shanskii, A. G. Domantovskii, B. A. Aronzon, and E. Z. Meilikhov, Phys.—Usp. 44(1), 95 (2001).

    Article  ADS  Google Scholar 

  2. B. A. Gurovich, D. I. Dolgy, E. A. Kuleshova, E.Z. Meilikhov, A. G. Domantovsky, K. E. Prikhodko, K. I. Maslakov, B. A. Aronzon, V. V. Rylkov, and A. Yu. Yakubovsky, Microelectron. Eng. 69, 358 (2003).

    Article  Google Scholar 

  3. B. A. Gurovich, A. G. Domantovskii, K. I. Maslakov, and K. E. Prikhod’ko, Poverkhnost, No. 10, 67 (2004).

    Google Scholar 

  4. B. A. Gurovich, E. A. Kuleshova, D. I. Dolgy, E. P. Velikhov, E. D. Ol’shanskii, A. G. Domantovskii, B. A. Aronzon, and E. Z. Meilikhov, in Nanostructured Magnetic Materials and Their Applications, Ed. by B. A. Aktas, L. Tagirov, and F. Mikailov (Kluwer, Dordrecht, The Netherlands, 2004), p. 13.

  5. B. A. Gurovich, B. A. Aronzon, V. V. Ril’kov, E. D. Ol’shanski, E. A. Kuleshova, D. I. Dolgi, D. Yu. Kovalev, and V. I. Filippov, Semiconductors 38(9), 1036 (2004).

    Article  ADS  Google Scholar 

  6. B. Gurovich, A. Domantovsky, E. Kuleshova, K. Prikhodko, A. Domantovsky, E. Kuleshova, E. Olshansky, K. Maslakov, and Y. Lunin, Proc. SPIE-Int. Soc. Opt. Eng. 6260, 626005 (2006).

    Article  Google Scholar 

  7. A. G. Domantovsky, B. A. Gurovich, and K. I. Maslakov, Crystallogr. Rep. 51(Suppl. 1), S196 (2006).

    Article  ADS  Google Scholar 

  8. B. Gurovich, E. Kuleshova, D. Dolgy, K. Prikhodko, A. Domantovsky, K. Maslakov, E. Z. Meilikhov, and A. Yakubovsky, in Magnetic Nanostructures, Ed. by B. Aktas, L. Tagirov, and F. Mikailov (Springer-Verlag, Berlin, 2007), Vol. 94, p. 47.

  9. B. A. Gurovich, E. A. Kuleshova, K. E. Prikhod’ko, A. G. Domantovskii, and K. I. Maslakov, Nano-Mikrosist. Tekh. 4, 2 (2007).

    Google Scholar 

  10. B. A. Gurovich, A. G. Domantovskii, K. I. Maslakov, and K. E. Prikhod’ko, J. Surf. Invest. 2(3), 352 (2008).

    Article  Google Scholar 

  11. B. A. Gurovich, K. E. Prikhod’ko, E. A. Kuleshova, A. G. Domantovskii, and K. I. Maslakov, Prikl. Fiz., No. 1, 44 (2008).

    Google Scholar 

  12. B. A. Gurovich, K. E. Prikhod’ko, Phys.—Usp. 52(2), 165 (2009).

    Article  ADS  Google Scholar 

  13. B. A. Gurovich, K. E. Prikhod’ko, A. N. Taldenkov, A. G. Domantovskii, D. A. Komarov, and L. V. Kutuzov, Nanotechnol. Russ. 7(1), 28 (2012).

    Article  Google Scholar 

  14. E. J. Henley and E. R. Johnson, The Chemistry and Physics of High-Energy Reactions (Washington University Press, Washington, 1969; Atomizdat, Moscow, 1974).

    Google Scholar 

  15. L. T. Bugaenko, M. G. Kuz’min, and L. S. Polak, High-Energy Chemistry (Khimiya, Moscow, 1988) [in Russian].

    Google Scholar 

  16. V. V. Saraeva, in Modern Problems of Physical Chemistry, Ed. by K. V. Topchieva (Moscow State University, Moscow, 1975), p. 367 [in Russian].

  17. B. Baretzky, W. Moller, and E. Taglauer, Nucl. Instrum Methods Phys. Res., Sect. B 18, 496 (1987).

    Article  Google Scholar 

  18. B. A. Gurovich, K. E. Prikhod’ko, L. V. Kutuzov, E. A. Rotanov, and A. P. Bandura, J. Surf. Invest. 5(1), 30 (2011).

    Article  Google Scholar 

  19. Xi-Qiao Feng and Y. Huang, Int. J. Solids Struct. 41, 4299 (2004).

    Article  MATH  Google Scholar 

  20. K. V. Srikrishnan, US Patent No. 5 882 987 (August 26, 1997).

  21. J. S. Williams, R. G. Elliman, H. H. Tan, P. Lever, J. Wong-Leung, and C. Jagadish, Mater. Forum 26, 74 (2002).

    Google Scholar 

  22. S. Hava, B. M. Lacquet, and P. L. Swart, J. Electron. Mater. 18, 589 (1989).

    Article  ADS  Google Scholar 

  23. R. Singh and S. Ashok, Appl. Phys. Lett. 47, 426 (1985).

    Article  ADS  Google Scholar 

  24. Semiconductor and Semimetals, Vol. 21: Hydrogenated Amorphous Silicon, Part C: Electronic and Transport Properties, Ed. by J. I. Pankov (Academic, New York, 1984), p. 314.

    Google Scholar 

  25. O. Zinchuk, A. Saad, N. Drozdov, A. Fedotov, S. Kobeleva, A. Mazanik, A. Patryn, V. Pilipenko, and A. Pushkarchuk, J. Mater. Sci.: Mater. Electron. 19, S273 (2008).

    Article  Google Scholar 

  26. B. A. Gurovich, K. E. Prikhod’ko, K. I. Maslakov, A. Yu. Yakubovskii, K. I. Maslakov, D. A. Komarov, L. V. Kutuzov, and G. E. Fedorov, Nanotechnol. Russ. 7(1–2), 93 (2012).

    Article  Google Scholar 

  27. Practical Surface Analysis, Ed. by D. Briggs and M. P. Seah (Wiley, New York, 1990).

    Google Scholar 

  28. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Physical Electronics Division, Eden Prairie, Minnesota, United States, 1995).

    Google Scholar 

  29. D. A. Shirley, Phys. Rev. B: Solid State 5, 4709 (1972).

    Article  ADS  Google Scholar 

  30. F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff, and G. Hollinger, Phys. Rev. B: Condens. Matter 38, 6084 (1988).

    Article  ADS  Google Scholar 

  31. R. Burger and R. Donovan, Fundamentals of Silicon Integrated Device Technology: Oxidation, Diffusion, and Epitaxy (Prentice Hall, New York, 1967; Mir, Moscow, 1969).

    Google Scholar 

  32. J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, The Stopping and Range of Ions in Matter (Lulu Press, Morrisville, 2008). http://www.srim.org.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Prikhod’ko.

Additional information

Original Russian Text © B.A. Gurovich, K.E. Prikhod’ko, E.A. Kuleshova, K.I. Maslakov, D.A. Komarov, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 143, No. 6, pp. 1062–1076.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurovich, B.A., Prikhod’ko, K.E., Kuleshova, E.A. et al. Use of radiation effects for a controlled change in the chemical composition and properties of materials by intentional addition or substitution of atoms of a certain kind. J. Exp. Theor. Phys. 116, 916–927 (2013). https://doi.org/10.1134/S1063776113050191

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776113050191

Keywords

Navigation