Skip to main content
Log in

Spin-flip induction of Fano resonance upon electron tunneling through atomic-scale spin structures

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The inclusion of inelastic spin-dependent electron scatterings by the potential profiles of a single magnetic impurity and a spin dimer is shown to induce resonance features due to the Fano effect in the transport characteristics of such atomic-scale spin structures. The spin-flip processes leading to a configuration interaction of the system’s states play a fundamental role for the realization of Fano resonance and antiresonance. It has been established that applying an external magnetic field and a gate electric field allows the conductive properties of spin structures to be changed radically through the Fano resonance mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Heinrich, J. A. Gupta, C. P. Lutz, and D. M. Eigler, Science (Washington) 306, 466 (2004).

    Article  ADS  Google Scholar 

  2. C. F. Hirjibehedin, C. P. Lutz, and A. J. Heinrich, Science (Washington) 312, 1021 (2006).

    Article  ADS  Google Scholar 

  3. C. F. Hirjibehedin, C.-Y. Lin, A. F. Otte, M. Ternes, C. P. Lutz, B. A. Jones, and A. J. Heinrich, Science (Washington) 317, 1199 (2007).

    Article  ADS  Google Scholar 

  4. X. Chen, Y.-S. Fu, S.-H. Ji, T. Zhang, P. Cheng, X.-C. Ma, X.-L. Zou, W.-H. Duan, J.-F. Jia, and Q.-K. Xue, Phys. Rev. Lett. 101, 197208 (2008).

    Article  ADS  Google Scholar 

  5. A. F. Otte, M. Ternes, K. von Bergmann, S. Loth, H. Brune, C. P. Lutz, C. F. Hirjibehedin, and A. J. Heinrich, Nat. Phys. 4, 847 (2008).

    Article  Google Scholar 

  6. N. Tsukahara, K. I. Noto, M. Ohara, S. Shiraki, N. Takagi, Y. Takata, J. Miyawaki, A. Chainani, S. Shin, and M. Kawai, Phys. Rev. Lett. 102, 167203 (2009).

    Article  ADS  Google Scholar 

  7. S. Loth, K. von Bergmann, M. Ternes, A. F. Otte, C. P. Lutz, and A. J. Heinrich, Nat. Phys. 6, 340 (2010).

    Article  Google Scholar 

  8. S. Loth, S. Baumann, C. P. Lutz, D. M. Eigler, and A. J. Heinrich, Science (Washington) 335, 196 (2012).

    Article  ADS  Google Scholar 

  9. J. Fernandez-Rossier, Phys. Rev. Lett. 102, 256802 (2009).

    Article  ADS  Google Scholar 

  10. J.-P. Gauyacq, F. D. Novaes, and N. Lorente, Phys. Rev. B: Condens. Matter 81, 165423 (2010).

    Article  ADS  Google Scholar 

  11. L. Bogani and W. Wernsdorfer, Nat. Mater. 7, 179 (2008).

    Article  ADS  Google Scholar 

  12. M. N. Leuenberger and D. Loss, Nature (London) 410, 789 (2001).

    Article  ADS  Google Scholar 

  13. S. Barraza-Lopez, K. Park, V. Garcia-Suarez, and J. Ferrer, Phys. Rev. Lett. 102, 246801 (2009).

    Article  ADS  Google Scholar 

  14. M. Misiorny, I. Weymann, and J. Barnas, Europhys. Lett. 89, 18003 (2010).

    Article  ADS  Google Scholar 

  15. J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruña, P. L. McEuen, and D. C. Ralph, Nature (London) 417, 722 (2002).

    Article  ADS  Google Scholar 

  16. W. Liang, M. P. Shores, M. Bockrath, J. R. Long, and H. Park, Nature (London) 417, 725 (2002).

    Article  ADS  Google Scholar 

  17. V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, Science (Washington) 280, 567 (1998).

    Article  ADS  Google Scholar 

  18. U. Fano, Phys. Rev. 124, 1866 (1961).

    Article  ADS  Google Scholar 

  19. A. E. Miroshnichenko, S. Flash, and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).

    Article  ADS  Google Scholar 

  20. V. V. Val’kov and S. V. Aksenov, JETP 113(2), 266 (2011).

    Article  ADS  Google Scholar 

  21. V. V. Val’kov, S. V. Aksenov, and E. A. Ulanov, Bull. Russ. Acad. Sci.: Phys. 76(3), 362 (2012).

    Article  Google Scholar 

  22. M. Misiorny, I. Weymann, and J. Barnas, Phys. Rev. Lett. 106, 126602 (2011).

    Article  ADS  Google Scholar 

  23. J. Gores, D. Goldhaber-Gordon, S. Heemeyer, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, Phys. Rev. B: Condens. Matter 62, 2188 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Val’kov.

Additional information

Original Russian Text © V.V. Val’kov, S.V. Aksenov, E.A. Ulanov, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 143, No. 5, pp. 984–990.

The article is based on a preliminary report delivered at the 36th Conference on Low-Temperature Physics (St. Petersburg, July 2–6, 2012).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Val’kov, V.V., Aksenov, S.V. & Ulanov, E.A. Spin-flip induction of Fano resonance upon electron tunneling through atomic-scale spin structures. J. Exp. Theor. Phys. 116, 854–859 (2013). https://doi.org/10.1134/S1063776113050130

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776113050130

Keywords

Navigation