Skip to main content
Log in

Peculiarities of the electron spectrum and metal-insulator transition in the strong correlation limit

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Green’s function in the paramagnetic phase of the Hubbard model with strong electron correlations is calculated by the many-electron operators method. The density of states pattern is considered in the case of half-filling (metal-insulator transition) and in the doped case. The effect of the low-temperature Kondo scattering on the energy spectrum is analyzed, and the results are compared with the results of the dynamical mean-field theory (DMFT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hubbard, Proc. R. Soc. London, Ser. A 281, 401 (1964).

    Article  ADS  Google Scholar 

  2. R. O. Zaitsev, Sov. Phys. JETP 48(6), 1193 (1978).

    ADS  Google Scholar 

  3. A. O. Anokhin, V. Yu. Irkhin, and M. I. Katsnelson, J. Phys.: Condens. Matter. 3, 1475 (1991).

    ADS  Google Scholar 

  4. Yu. A. Izyumov and V. I. Anisimov, Electronic Structure of Strongly Correlated Materials (Springer Series in Solid-State Sciences) (Scientific Research Center Regular and Chaotic Dynamics, Moscow, 2009; Springer-Verlag, Berlin, 201).

    Google Scholar 

  5. J. Hubbard, Proc. R. Soc. London, Ser. A 285, 542 (1965).

    Article  ADS  Google Scholar 

  6. V. Yu. Irkhin and Yu. P. Irkhin, Phys. Status Solidi B 183, 9 (1994).

    Article  ADS  Google Scholar 

  7. V. Yu. Irkhin and Yu. P. Irkhin, Electronic Structure, Correlation Effects, and Physical Properties of d- and f-Metals and Their Compounds (Cambridge International Science, Cambridge, 2007; Scientific Research Center Regular and Chaotic Dynamics, Moscow, 2008).

    MATH  Google Scholar 

  8. V. Yu. Irkhin and A. V. Zarubin, Eur. Phys. J. B 38, 563 (2004).

    Article  ADS  Google Scholar 

  9. A. Georges and G. Kotliar, Phys. Rev. B: Condens. Matter 45, 6479 (1992).

    Article  ADS  Google Scholar 

  10. X. Y. Zhang, M. J. Rozenberg, and G. Kotliar, Phys. Rev. Lett. 70, 1666 (1993).

    Article  ADS  Google Scholar 

  11. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  ADS  Google Scholar 

  12. Yu. A. Izyumov, Phys.-Usp. 38(4), 385 (1995); Yu. A. Izyumov, and E. Z. Kurmaev, Phys.-Usp. 51 (1), 23 (2008).

    Article  ADS  Google Scholar 

  13. R. Bulla, Phys. Rev. Lett. 83, 136 (1999).

    Article  ADS  Google Scholar 

  14. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, JETP 106(3), 581 (2008).

    Article  ADS  Google Scholar 

  15. M. Jarrell and Th. Pruschke, Z. Phys. B: Condens. Matter 90, 187 (1993).

    Article  ADS  Google Scholar 

  16. M. Jarrell, Th. Maier, C. Huscroft, and S. Moukouri, Phys. Rev. B: Condens. Matter 64, 195130 (2001).

    Article  ADS  Google Scholar 

  17. S. R. White, D. J. Scalapino, R. L. Sugar, and N. E. Bickers, Phys. Rev. Lett. 63, 1523 (1989).

    Article  ADS  Google Scholar 

  18. M. S. Laad, L. Craco, and E. Müller-Hartmann, Phys. Rev. B: Condens. Matter 64, 195114 (2001).

    Article  ADS  Google Scholar 

  19. A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. B: Condens. Matter 77, 033101 (2008).

    Article  ADS  Google Scholar 

  20. H. Hafermann, G. Li, A. N. Rubtsov, M. I. Katsnelson, A. I. Lichtenstein, and H. Monien, Phys. Rev. Lett. 102, 206401 (2009).

    Article  ADS  Google Scholar 

  21. E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, and P. Werner, Rev. Mod. Phys. 83, 349 (2011).

    Article  ADS  Google Scholar 

  22. K. Kikoin, M. Kiselev, and Y. Avishai, Dynamical Symmetries for Nanostructures: Implicit Symmetries in Single-Electron Transport through Real and Artificial Molecules (Springer-Verlag, Berlin, 2012).

    Book  Google Scholar 

  23. A. V. Zarubin and V. Yu. Irkhin, JETP 114(5), 850 (2012).

    Article  ADS  Google Scholar 

  24. V. Yu. Irkhin and A. V. Zarubin, Eur. Phys. J. B 16, 463 (2000).

    Article  ADS  Google Scholar 

  25. Y. Nagaoka, Phys. Rev. 147, 392 (1966).

    Article  ADS  Google Scholar 

  26. M. Caffarel and W. Krauth, Phys. Rev. Lett. 72, 1545 (1994).

    Article  ADS  Google Scholar 

  27. Th. Pruschke, D. L. Cox, and M. Jarrell, Phys. Rev. B: Condens. Matter 47, 3553 (1993).

    Article  ADS  Google Scholar 

  28. M. Jarrell, J. K. Freericks, and Th. Pruschke, Phys. Rev. B: Condens. Matter 51, 11704 (1995).

    Article  ADS  Google Scholar 

  29. D. S. Fischer, G. Kotliar, and G. Moeller, Phys. Rev. B: Condens. Matter 52, 17112 (1995).

    Article  ADS  Google Scholar 

  30. H. Kajueter, G. Kotliar, and G. Moeller, Phys. Rev. B: Condens. Matter 53, 16214 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Irkhin.

Additional information

Original Russian Text © V.Yu. Irkhin, A.V. Zarubin, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 143, No. 5, pp. 971–976.

The article is based on a preliminary report delivered at the 36th Conference on Low-Temperature Physics (St. Petersburg, July 2–6, 2012).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irkhin, V.Y., Zarubin, A.V. Peculiarities of the electron spectrum and metal-insulator transition in the strong correlation limit. J. Exp. Theor. Phys. 116, 843–847 (2013). https://doi.org/10.1134/S106377611305004X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611305004X

Keywords

Navigation