Skip to main content

Electromagnetic plane waves with negative phase velocity in charged black strings

Abstract

We investigate the propagation regions of electromagnetic plane waves with negative phase velocity in the ergosphere of static charged black strings. For such a propagation, some conditions for negative phase velocity are established that depend on the metric components and the choice of the octant. We conclude that these conditions remain unaffected by the negative values of the cosmological constant.

This is a preview of subscription content, access via your institution.

References

  1. R. A. Shelby, D. R. Smith, and S. Schultz, Science (Washington) 292, 77 (2001).

    ADS  Article  Google Scholar 

  2. J. B. Pendry, Contemp. Phys. 45, 191 (2004).

    ADS  Article  Google Scholar 

  3. A. Lakhtakia, M. W. McCall, and W. S. Weiglhofer, AEU-Int. J. Electron. Commun. 56, 407 (2002).

    Article  Google Scholar 

  4. A. Lakhtakia, M. W. McCall, and W. S. Weiglhofer, Introduction to Complex Medium for Optics and Electromagnetics (SPIE Press, Bellingham, Washington, 2003).

    Google Scholar 

  5. A. Lakhtakia, T. G. Mackay, and S. Setiawan, Eur. Phys. J. C 336, 89 (2005).

    MATH  Google Scholar 

  6. D. R. Simth, Phys. World 17, 23 (2004).

    ADS  Google Scholar 

  7. V. G. Veselago, Sov. Phys.-Usp. 10(4), 509 (1967).

    ADS  Article  Google Scholar 

  8. K. Aydin, K. Guven, C. M. Soukoulis, and E. Ozbay, Appl. Phys. Lett. 86, 124102 (2005).

    ADS  Article  Google Scholar 

  9. J. B. Pendry, Phys. Rev. Lett. 18, 3966 (2000).

    ADS  Article  Google Scholar 

  10. A. Lakhtakia, Int. J. Infrared Millimeter Waves 23, 339 (2002).

    Article  Google Scholar 

  11. K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 70, 035602 (2004).

    ADS  Article  Google Scholar 

  12. S. Park and H. S. Sim, Phys. Rev. B: Condens. Matter 84, 235432 (2011).

    ADS  Article  Google Scholar 

  13. T. G. Mackay, A. Lakhtakia, and S. Setiawan, Eur. Phys. J. C 41S1, 1 (2005).

    ADS  Article  Google Scholar 

  14. A. Lakhtakia and T. G. Mackay, Phys. A: Math. Gen. 37, 12093 (2004).

    MathSciNet  ADS  Article  Google Scholar 

  15. T. G. Mackay, A. Lakhtakia, and S. Setiawan, New J. Phys. 7, 75 (2005).

    ADS  Article  Google Scholar 

  16. T. G. Mackay, A. Lakhtakia, and S. Setiawan, Eur. Phys. Lett. 71, 925 (2005).

    ADS  Article  Google Scholar 

  17. T. G. Mackay, A. Lakhtakia, and S. Setiawan, New J. Phys. 7, 171 (2005).

    Article  Google Scholar 

  18. T. G. Mackay, A. Lakhtakia, and B. M. Ross, Optik 121, 401 (2010).

    ADS  Article  Google Scholar 

  19. M. Sharif and N. Mukhtar, Astrophys. Space Sci. 331, 151 (2011); M. Sharif and N. Mukhtar, Astrophys. Space Sci. 333, 187 (2011); M. Sharif and I. Noureen, Can. J. Phys. 89, 991 (2011).

    ADS  MATH  Article  Google Scholar 

  20. I. E. Tamm, Zh. Russ. Fiz.-Khim. O-va., Chast Fiz. 56, 248 (1924).

    Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Clarendon, Oxford, 1975).

    Google Scholar 

  22. G. V. Skrotskii, Sov. Phys. Dokl. 2, 226 (1957).

    ADS  MATH  Google Scholar 

  23. J. Plebanski, Phys. Rev. 118, 1396 (1960).

    MathSciNet  ADS  MATH  Article  Google Scholar 

  24. C. Moller, The Theory of Relativity (Clarendon, Oxford, 1972).

    Google Scholar 

  25. B. Mashhoon, Phys. Rev. D: Part. Fields 7, 2807 (1973).

    MathSciNet  ADS  Article  Google Scholar 

  26. L. M. Burko, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 65, 046618 (2002).

    ADS  Article  Google Scholar 

  27. J. P. S. Lemos and V. T. Zanchin, Phys. Rev. D: Part. Fields 54, 3840 (1996).

    MathSciNet  ADS  Article  Google Scholar 

  28. Y. Z. Zhang and R. G. Cail, Phys. Rev. D: Part. Fields 54, 4891 (1996).

    ADS  Article  Google Scholar 

  29. H. C. Chen, Theory of Electromagnetic Waves (McGraw-Hill, New York, 1983).

    Google Scholar 

  30. T. G. Mackay and A. Lakhtakia, Curr. Sci. 86, 1593 (2004).

    Google Scholar 

  31. M. Sharif and R. Manzoor, JETP 115(6), 986 (2012).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sharif.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sharif, M., Manzoor, R. Electromagnetic plane waves with negative phase velocity in charged black strings. J. Exp. Theor. Phys. 116, 223–228 (2013). https://doi.org/10.1134/S1063776113020052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776113020052

Keywords

  • Black Hole
  • Negative Refraction
  • Black String
  • Electromagnetic Plane Wave
  • Regular Black Hole