Skip to main content
Log in

Propagation of excitation in long 1D chains: Transition from regular quantum dynamics to stochastic dynamics

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The quantum dynamics problem for a 1D chain consisting of 2N + 1 sites (N ≫ 1) with the interaction of nearest neighbors and an impurity site at the middle differing in energy and in coupling constant from the sites of the remaining chain is solved analytically. The initial excitation of the impurity is accompanied by the propagation of excitation over the chain sites and with the emergence of Loschmidt echo (partial restoration of the impurity site population) in the recurrence cycles with a period proportional to N. The echo consists of the main (most intense) component modulated by damped oscillations. The intensity of oscillations increases with increasing cycle number and matrix element C of the interaction of the impurity site n = 0 with sites n = ±1 (0 < C ≤ 1; for the remaining neighboring sites, the matrix element is equal to unity). Mixing of the components of echo from neighboring cycles induces a transition from the regular to stochastic evolution. In the regular evolution region, the wave packet propagates over the chain at a nearly constant group velocity, embracing a number of sites varying periodically with time. In the stochastic regime, the excitation is distributed over a number of sites close to 2N, with the populations varying irregularly with time. The model explains qualitatively the experimental data on ballistic propagation of the vibrational energy in linear chains of CH2 fragments and predicts the possibility of a nondissipative energy transfer between reaction centers associated with such chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. User and W. H. Miller, Phys. Rep. 199, 73 (1991).

    Article  ADS  Google Scholar 

  2. V. M. Kenkre, A. Tokmakoff, and M. D. Fayer, J. Chem. Phys. 101, 10618 (1994).

    Article  ADS  Google Scholar 

  3. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, Oxford, 1995).

    Google Scholar 

  4. C. J. Fesko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, and P. L. Geissler, Science (Wasington) 301, 1698 (2003).

    Article  ADS  Google Scholar 

  5. D. M. Leitner, Adv. Chem. Phys. B 130, 205 (2005).

    Article  Google Scholar 

  6. R. Zwanzig, Lect. Theor. Phys. 3, 106 (1960).

    Google Scholar 

  7. V. A. Benderskii, L. A. Falkovsky, and E. I. Kats, JETP Lett. 86(3), 221 (2007).

    Article  ADS  Google Scholar 

  8. V. A. Benderskii and E. I. Kats, JETP Lett. 88(5), 338 (2008).

    Article  ADS  Google Scholar 

  9. V. A. Benderskii, L. N. Gak, and E. I. Kats, JETP 108(1), 159 (2009); V. A. Benderskii, L. N. Gak, and E. I. Kats, JETP 109 (3), 505 (2009).

    Article  ADS  Google Scholar 

  10. V. A. Benderskii and E. I. Kats, JETP Lett. 92(6), 370 (2010).

    Article  ADS  Google Scholar 

  11. R. G. Snyder, J. Chem. Phys. 47, 1316 (1967).

    Article  ADS  Google Scholar 

  12. T. Ishioka, W. Yan, H. L. Strauss, and R. G. Snyder, Spectrochim. Acta, Part A 59, 671 (2003).

    Article  ADS  Google Scholar 

  13. K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters- Kennedy, and J. V. Coe, J. Chem. Phys. 121, 8671 (2004).

    Article  ADS  Google Scholar 

  14. H. Kuzmany, B. Burger, A. Thess, and R. E. Smalley, Carbon 36, 709 (1998).

    Article  Google Scholar 

  15. O. P. Charkin and N. M. Klimenko, private communication (2009).

  16. O. P. Charkin, N. M. Klimenko, and D. O. Charkin, Adv. Quantum Chem. 56, 69 (2009).

    Article  Google Scholar 

  17. M. Ben-Nun, F. Molnar, H. Lu, J. C. Phillips, T. J. Martinez, and K. Schulten, Faraday Discuss. 110, 447 (1998).

    Article  ADS  Google Scholar 

  18. S. Hayashi, E. Tajkhorshid, and K. Schulten, Biophys. J. 85, 1440 (2003).

    Article  Google Scholar 

  19. G. K. Paramonov, H. Naundorf, and O. Kuhn, Eur. J. Phys. D 14, 205 (2001).

    Article  ADS  Google Scholar 

  20. H. Fujisaki, Y. Zhang, and J. E. Straub, J. Chem. Phys. 124, 14491 (2006).

    Article  Google Scholar 

  21. S. Spörlein, H. Carstens, H. Satzger, C. Renner, R. Behrendt, L. Moroder, P. Tavan, W. Zinth, and J. Wachtveitl, Proc. Natl. Acad. Sci. USA 99, 7998 (2002).

    Article  ADS  Google Scholar 

  22. J. Bredenbeck, A. Ghosh, M. Smits, and M. Bonn, J. Am. Chem. Soc. 130, 2152 (2008).

    Article  Google Scholar 

  23. J. A. Carter, Z. Wang, and D. D. Dlott, Acc. Chem. Res. 42, 1343 (2009).

    Article  Google Scholar 

  24. I. V. Rubtsov, Acc. Chem. Res. 42, 1385 (2009).

    Article  Google Scholar 

  25. C. Keating, B. A. McClure, J. J. Rack, and I. V. Rubtsov, J. Chem. Phys. 133, 144513 (2010).

    Article  ADS  Google Scholar 

  26. Z. Lin, P. Keiffer, and I. V. Rubtsov, J. Phys. Chem. B 115, 5347 (2011).

    Article  Google Scholar 

  27. M. Galperin, M. A. Ratner, and A. Nitzan, J. Phys.: Condens. Matter 19, 103201 (2007).

    Article  ADS  Google Scholar 

  28. V. A. Benderskii and E. I. Kats, JETP Lett. 94(6), 459 (2011).

    Article  ADS  Google Scholar 

  29. P. Mazur and E. Montroll, J. Math. Phys. 1, 70 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. C. Domb, Proc. R. Soc. London, Ser. A 276, 418 (1963).

    Article  ADS  MATH  Google Scholar 

  31. A. S. Kovalev, Theor. Math. Phys. 37(1), 926 (1978).

    Article  MathSciNet  Google Scholar 

  32. D. Hennig, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 61, 4550 (2000).

    Article  Google Scholar 

  33. Z. Lin and B. Li, J. Phys. Soc. Jpn. 76, 074003 (2008).

    ADS  Google Scholar 

  34. F. R. Gantmacher and M. G. Krein, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems (Gostekhizdat, Moscow, 1950; American Mathematical Society, Providence, Rhode Island, United States, 2002).

    Google Scholar 

  35. H. Bateman and A. Erdelyi, Higher Transcendental Functions, (McGraw Hill, New York, 1953), Vol. 2.

    Google Scholar 

  36. F. W. J. Olver, Asymptotics and Special Functions (Academic, New York, 1974).

    Google Scholar 

  37. G. M. Zaslavsky, Chaos in Dynamic Systems (Nauka, Moscow, 1984; Taylor and Francis, London, 1985).

    Google Scholar 

  38. M. Tabor, Chaos and Integrability in Nonlinear Dynamics: An Introduction (Wiley, New York, 1989; URSS, Moscow, 2001).

    MATH  Google Scholar 

  39. W. H. Zurek, Phys. Rev. D: Part. Fields 26, 1862 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  40. P. Grigolini, Quantum Mechanical Irreversibility (World Scientific, Singapore, 1993).

    Book  Google Scholar 

  41. E. Fermi, J. R. Pasta, and S. M. Ulam, Los Alamos Sci. Lab., [Rep.], No. LA-1940 (1955).

  42. R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (Academic, London, 1984; Mir, Moscow, 1988).

    Google Scholar 

  43. R. W. Robinett, Phys. Rep. 392, 1 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  44. E. B. Fel’dman, R. Brushweiler, and R. R. Ernst, Chem. Phys. Lett. 294, 297 (1998).

    Article  ADS  Google Scholar 

  45. A. S. Davydov, Solitons in Molecular Systems (Kluwer, Dordrecht, 1985).

    Book  MATH  Google Scholar 

  46. D. Hochstrasser, F. G. Mertens, and H. Buttner, Phys. Rev. A: At., Mol., Opt. Phys. 40, 2602 (1989).

    Article  ADS  Google Scholar 

  47. A. Campa, A. Giansanti, A. Tenenbaum, D. Levi, and O. Ragnisco, Phys. Rev. B: Condens. Matter 48, 10168 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Benderskii.

Additional information

Original Russian Text © V.A. Benderskii, E.I. Kats, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 143, No. 1, pp. 5–19.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benderskii, V.A., Kats, E.I. Propagation of excitation in long 1D chains: Transition from regular quantum dynamics to stochastic dynamics. J. Exp. Theor. Phys. 116, 1–14 (2013). https://doi.org/10.1134/S1063776113010019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776113010019

Keywords

Navigation