Skip to main content
Log in

Conductance of finite systems and scaling in localization theory

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The conductance of finite systems plays a central role in the scaling theory of localization (Abrahams et al., Phys. Rev. Lett. 42, 673 (1979)). Usually it is defined by the Landauer-type formulas, which remain open the following questions: (a) exclusion of the contact resistance in the many-channel case; (b) correspondence of the Landauer conductance with internal properties of the system; (c) relation with the diffusion coefficient D(ω, q) of an infinite system. The answers to these questions are obtained below in the framework of two approaches: (1) self-consistent theory of localization by Vollhardt and Wölfle, and (2) quantum mechanical analysis based on the shell model. Both approaches lead to the same definition for the conductance of a finite system, closely related to the Thouless definition. In the framework of the self-consistent theory, the relations of finite-size scaling are derived and the Gell-Mann-Low functions β(g) for space dimensions d = 1, 2, 3 are calculated. In contrast to the previous attempt by Vollhardt and Wölfle (1982), the metallic and localized phase are considered from the same standpoint, and the conductance of a finite system has no singularity at the critical point. In the 2D case, the expansion of β(g) in 1/g coincides with results of the σ-model approach on the two-loop level and depends on the renormalization scheme in higher loops; the use of dimensional regularization for transition to dimension d = 2 + ε looks incompatible with the physical essence of the problem. The results are compared with numerical and physical experiments. A situation in higher dimensions and the conditions for observation of the localization law σ(ω) ∝ −iω for conductivity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).

    Article  ADS  Google Scholar 

  2. N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (Nauka, Moscow, 1976; Wiley, New York, 1980).

    Google Scholar 

  3. P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, Phys. Rev. B: Condens. Matter 22, 3519 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  4. P. W. Anderson, Phys. Rev. B: Condens. Matter 23, 4828 (1981).

    Article  ADS  Google Scholar 

  5. R. Landauer, IBM J. Res. Dev. 1, 223 (1957); R. Landauer, Philos. Mag. 21, 863 (1970).

    Article  MathSciNet  Google Scholar 

  6. E. N. Economou and C. M. Soukoulis, Phys. Rev. Lett. 46, 618 (1981).

    Article  ADS  Google Scholar 

  7. D. S. Fisher and P. A. Lee, Phys. Rev. B: Condens. Matter 23, 6851 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  8. D. C. Langreth and E. Abrahams, Phys. Rev. B: Condens. Matter 24, 2978 (1981).

    Article  ADS  Google Scholar 

  9. H. L. Engquist and P. W. Anderson, Phys. Rev. B: Condens. Matter 24, 1151 (1981).

    Article  ADS  Google Scholar 

  10. D. J. Thouless, Phys. Rev. Lett. 47, 972 (1981).

    Article  ADS  Google Scholar 

  11. M. Buttiker, Phys. Rev. Lett. 57, 1761 (1986); M. Buttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B: Condens. Matter 31, 6207 (1985).

    Article  ADS  Google Scholar 

  12. R. Landauer, Z. Phys. B: Condens. Matter 68, 217 (1987).

    Article  ADS  Google Scholar 

  13. M. Ya. Azbel, J. Phys. C: Solid State Phys. 14, L225 (1981).

    Article  ADS  Google Scholar 

  14. M. Buttiker, Y. Imry, and R. Landauer, Phys. Lett. A 96, 365 (1983).

    Article  ADS  Google Scholar 

  15. A. D. Stone and A. Szafer, IBM J. Res. Dev. 32, 384 (1988).

    Article  Google Scholar 

  16. D. Braun, E. Hofstetter, F. MacKinnon, and G. Montambaux, Phys. Rev. B: Condens. Matter 55, 7557 (1997).

    Article  ADS  Google Scholar 

  17. D. J. Thouless, Phys. Rep. 13, 93 (1974).

    Article  ADS  Google Scholar 

  18. S. Iida, H. A. Weidenmöller, and M. R. Zirnbauer, Ann. Phys. (New York) 200, 219 (1990).

    Article  ADS  Google Scholar 

  19. A. Altland, Z. Phys. B: Condens. Matter 82, 105 (1991).

    Article  ADS  Google Scholar 

  20. M. R. Zirnbauer, Phys. Rev. Lett. 69, 1584 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. P. W. Brouwer and K. Frahm, Phys. Rev. B: Condens. Matter 53, 1490 (1996).

    Article  ADS  Google Scholar 

  22. C. Mahaux and H. A. Weidenmüller, Shell-Model Approach to Nuclear Reactions (North-Holland, Amsterdam, 1969).

    Google Scholar 

  23. D. Vollhardt and P. Wölfle, Phys. Rev. B: Condens. Matter 22, 4666 (1980).

    Article  ADS  Google Scholar 

  24. D. Vollhardt and P. Wölfle, Phys. Rev. Lett. 48, 699 (1982).

    Article  ADS  Google Scholar 

  25. K. Wilson and J. Kogut, Renormalization Group and the Epsilon Expansion (Wiley, New York, 1974; Mir, Moscow, 1975).

    Google Scholar 

  26. S. Ma, Modern Theory of Critical Phenomena (Benjamin, Reading, Massachusetts, United States, 1976; Mir, Moscow, 1980).

    Google Scholar 

  27. J. L. Pichard and G. Sarma, J. Phys. C: Solid State Phys. 14, L127 (1981); J. L. Pichard and G. Sarma, J. Phys. C: Solid State Phys. 14, L617 (1981).

    Article  ADS  Google Scholar 

  28. A. MacKinnon and B. Kramer, Phys. Rev. Lett. 47, 1546 (1981); A. MacKinnon and B. Kramer, Z. Phys. B: Condens. Matter 53, 1 (1983).

    Article  ADS  Google Scholar 

  29. I. M. Suslov, JETP 101(4), 661 (2005).

    Article  ADS  Google Scholar 

  30. I. M. Suslov, JETP 114(1), 107 (2012).

    Article  ADS  Google Scholar 

  31. F. Wegner, Nucl. Phys. B 316, 663 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  32. S. Hikami, in Quantum Coherence in Mesoscopic Systems, Ed. by B. Kramer (Plenum, New York, 1991).

    Google Scholar 

  33. P. Markos, Acta Phys. Slovaca 56, 561 (2006); P. Markos, cond-mat/0609580.

    Article  Google Scholar 

  34. I. Kh. Zharekeshev, Vestn. Evraziiskogo Nats. Univ. im. L. N. Gumileva 77, 41 (2010).

    Google Scholar 

  35. E. I. Zavaritskaya, Sov. Phys. JETP 66(3), 536 (1987).

    Google Scholar 

  36. S. Waffenschmidt, C. Pfleiderer, and H. V. Loehneysen, Phys. Rev. Lett. 83, 3005 (1999).

    Article  ADS  Google Scholar 

  37. I. M. Suslov, JETP 81(5), 925 (1995).

    ADS  Google Scholar 

  38. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics: Part 1 (Nauka, Moscow, 1976; Pergamon, New York, 1976).

    Google Scholar 

  39. A. B. Migdal, Qualitative Methods in Quantum Theory (Nauka, Moscow, 1975; Addison-Wesley, New York, 1977).

    Google Scholar 

  40. G. A. Korn and T. M. Korn, Mathematical Handbook (McGraw-Hill, New York, 1968; Nauka, Moscow, 1977).

    Google Scholar 

  41. J. M. Ziman, Elements of Advanced Quantum Theory (Cambridge University Press, Cambridge, 1969; Mir, Moscow, 1971).

    MATH  Google Scholar 

  42. A. A. Vladimirov and D. V. Shirkov, Sov. Phys.-Usp. 22(10), 860 (1979).

    Article  ADS  Google Scholar 

  43. G.’ t Hooft, in The Whys of Subnuclear Physics: Proceedings of the International School of Subnuclear Physics, Erice, Trapani, Sicily, Italy, July 23–August 10 1977, Ed. by A. Zichichi (Plenum, New York, 1979).

    Google Scholar 

  44. I. M. Suslov, arXiv:hep-ph/0605115.

  45. H. Kunz and R. Souillard, J. Phys., Lett. 44, L506 (1983).

    Google Scholar 

  46. V. E. Kravtsov, I. V. Lerner, and V. I. Yudson, Sov. Phys. JETP 67(7), 1441 (1988).

    MathSciNet  Google Scholar 

  47. F. Wegner, Z. Phys. B: Condens. Matter 78, 33 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  48. P. K. Mitter and H. R. Ramadas, Commun. Math. Phys. 122, 575 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. J. B. Pendry, Adv. Phys. 43, 461 (1994).

    Article  ADS  Google Scholar 

  50. J. T. Chalker, Physica A (Amserdam) 167, 253 (1990); T. Brandes, B. Huckestein, and L. Schweitzer, Ann. Phys. (Weinheim) 508, 633 (1996).

    Article  ADS  Google Scholar 

  51. F. Wegner, Z. Phys. B: Condens. Matter 25, 327 (1976).

    ADS  Google Scholar 

  52. G. Lemarié, H. Lignier, D. Delande, P. Szriftgiser, and J. C. Garreau, arXiv:1005.1540.

  53. V. L. Berezinskii, Sov. Phys. JETP 38(3), 620 (1974).

    ADS  Google Scholar 

  54. L. P. Levy, G. Dolan, J. Dunsmuir, and H. Bouchiat, Phys. Rev. Lett. 64, 2074 (1990).

    Article  ADS  Google Scholar 

  55. H. Bluhm, N. Koshnick, J. Bert, M. E. Huber, and K. A. Moler, Phys. Rev. Lett. 102, 136802 (2009).

    Article  ADS  Google Scholar 

  56. A. C. Bleszynski-Jayich, W. E. Shanks, B. Peaudecerf, E. Ginossar, F. von Oppen, L. Glazman, and J. G. E. Harris, Science (Washington) 326, 272 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Suslov.

Additional information

Original Russian Text © I.M. Suslov, 2012, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 142, No. 5, pp. 1020–1043.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suslov, I.M. Conductance of finite systems and scaling in localization theory. J. Exp. Theor. Phys. 115, 897–917 (2012). https://doi.org/10.1134/S1063776112110143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112110143

Keywords

Navigation