Skip to main content
Log in

Dynamics and stability of a linear cluster of spherical magnetic nanoparticles

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Magnetic particles freely moving in a fluid may organize themselves into dense phases, bulk clusters, or linear chains. The dynamics of particles forming a chain is analyzed theoretically taking into account the magnetic dipole interaction as well as the Van der Waals molecular interaction. The vibrational spectrum has two branches (the magnetic branch associated with the rotation of the magnetic moment of a particle and the elastic branch associated with the displacement of particles). In the case of particles with constant mass density and magnetic moment, which is interesting for applications, these two modes are in fact independent; i.e., the effects of mode hybridization are weak. However, these effects can be manifested for hollow particles. From analysis of the vibrational spectrum, the criterion for the chain stability to a transition to a denser phase is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Akhiezer, V. G. Bar’yakhtar, and S. V. Peletmin- skii, Spin Waves (Nauka, Moscow, 1967; North-Holland, Amsterdam, The Netherlands, 1968).

    Google Scholar 

  2. K. P. Belov, A. K. Zvezdin, A. M. Kadomtseva, and R. Z. Levitin, Orientational Transitions in Rare-Earth Magnetic Materials (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  3. E. A. Turov, A. V. Kolchanov, V. V. Men’shenin, I. F. Mirsaev, and V. V. Nikolaev, Symmetry and the Physical Properties of Antiferromagnets (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  4. J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946).

    Article  ADS  Google Scholar 

  5. P. I. Belobrov, R. S. Gekht, and V. A. Ignatchenko, Sov. Phys. JETP 57(3), 636 (1983).

    Google Scholar 

  6. J. G. Brankov and D. M. Danchev, Physica A (Amsterdam) 144, 128 (1987).

    Article  ADS  Google Scholar 

  7. S. Prakash and C. L. Henley, Phys. Rev. B: Condens. Matter 42, 6574 (1990).

    Article  ADS  Google Scholar 

  8. V. M. Rozenbaum, V. M. Ogenko, and A. A. Chuiko, Sov. Phys.—Usp. 34(10), 883 (1991).

    Article  ADS  Google Scholar 

  9. J. E. L. Bishop, A. Yu. Galkin, and B. A. Ivanov, Phys. Rev. B: Condens. Matter 65, 174403 (2002).

    Article  ADS  Google Scholar 

  10. A. Yu. Galkin, B. A. Ivanov, and A. Yu. Merkulov, JETP 101(6), 1106 (2005).

    Article  ADS  Google Scholar 

  11. A. Yu. Galkin and B. A. Ivanov, JETP Lett. 83(9), 383 (2006).

    Article  Google Scholar 

  12. I. R. Karetnikova, I. M. Nefedov, M. V. Sapozhnikov, A. A. Fraerman, and I. A. Shereshevskii, Phys. Solid State (St. Petersburg) 43(11), 2115 (2001).

    Article  ADS  Google Scholar 

  13. P. Politi and M. G. Pini, Phys. Rev. B: Condens. Matter 66, 214414 (2002).

    Article  ADS  Google Scholar 

  14. A. Yu. Galkin, B. A. Ivanov, and C. E. Zaspel, Phys. Rev. B: Condens. Matter 74, 144419 (2006).

    Article  ADS  Google Scholar 

  15. P. V. Bondarenko, A. Yu. Galkin, B. A. Ivanov, and C. E. Zaspel, Phys. Rev. B: Condens. Matter 81, 224415 (2010); P. V. Bondarenko, A. Yu. Galkin, and B. A. Ivanov, JETP 112 (6), 986 (2011).

    Article  ADS  Google Scholar 

  16. S. V. Maleev, Sov. Phys. JETP 43(6), 1240 (1976).

    ADS  Google Scholar 

  17. P. Bruno, Phys. Rev. B: Condens. Matter 43, 6015 (1991).

    Article  ADS  Google Scholar 

  18. B. A. Ivanov and E. V. Tartakovskaya, Phys. Rev. Lett. 77, 386 (1996).

    Article  ADS  Google Scholar 

  19. R. Skomski, J. Phys.: Condens. Matter 15, R841 (2003).

    Article  ADS  Google Scholar 

  20. Advanced Magnetic Nanostructures, Ed. by D. J. Sellmyer and R. Skomski (Springer, New York, United States, 2006).

    Google Scholar 

  21. M. Dvornik, P. Bondarenko, B. A. Ivanov, and V. V. Kruglyak, J. Appl. Phys. 109, 07B912 (2011).

    Article  Google Scholar 

  22. A. A. Awad, G. R. Aranda, D. Dieleman, K. Y. Guslienko, G. N. Kakazei, B. A. Ivanov, and F. G. Aliev, Appl. Phys. Lett. 97, 132501 (2010).

    Article  ADS  Google Scholar 

  23. V. V. Kruglyak, S. O. Demokritov, and D. Grundler, J. Phys. D: Appl. Phys. 43, 264001 (2010).

    Article  ADS  Google Scholar 

  24. R. E. Rosensweig, Ferrohydrodynamics (Cambridge University Press, Cambridge, 1985; Mir, Moscow, 1989).

    Google Scholar 

  25. S. Y. Yang, Y. H. Chao, H. E. Horng, Chin Yin Hong, and H. C. Yang, J. Appl. Phys. 97, 093907 (2005).

    Article  ADS  Google Scholar 

  26. Y. Zhang, L. Sun, Y. Zhai, H. B. Huang, R. S. Huang, H. X. Lu, and H. R. Zhai, J. Appl. Phys. 101, 09J109 (2007).

    Article  Google Scholar 

  27. S.-M. Zhou, X.-T. Zhang, H.-C. Gong, B. Zhang, Z.-S. Wu, Z.-L. Du, and S.-X. Wu, J. Phys.: Condens. Matter 20, 075217 (2008).

    Article  ADS  Google Scholar 

  28. V. Schaller, G. Wahnström, A. Sanz-Velasco, P. Enoks- son, and C. Johansson, J. Magn. Magn. Mater. 321, 1400 (2009).

    Article  ADS  Google Scholar 

  29. R. Rungsawang, J. da Silva, C.-P. Wu, E. Sivaniah, A. Ionescu, C. H. W. Barnes, and N. J. Darton, Phys. Rev. Lett. 104, 255703 (2010).

    Article  ADS  Google Scholar 

  30. A. Wu, P. Ou, and L. Zeng, NANO 5, 245 (2010).

    Article  Google Scholar 

  31. R. P. Cowburn and M. E. Welland, Science (Washington) 287, 1466 (2000).

    Article  ADS  Google Scholar 

  32. T. C. Halsey and W. Toor, Phys. Rev. Lett. 65, 2820 (1990).

    Article  ADS  Google Scholar 

  33. J. J. Weis and D. Levesque, Phys. Rev. Lett. 71, 2729 (1993).

    Article  ADS  Google Scholar 

  34. P. Jund, S. G. Kim, D. Tomanek, and J. Hetherington, Phys. Rev. Lett. 74, 3049 (1995).

    Article  ADS  Google Scholar 

  35. A. Satoh, R. W. Chantrell, S. Kamiyama, and G. N. Coverdale, J. Magn. Magn. Mater. 154, 183 (1996).

    Article  ADS  Google Scholar 

  36. A. Satoh, R. W. Chantrell, S. Kamiyama, and G. N. Coverdale, J. Colloid Interface Sci. 181, 422 (1996).

    Article  Google Scholar 

  37. O. A. Antonyuk, V. F. Kovalenko, B. N. Moldovan, and M. V. Petrichuk, Tech. Phys. 50(6), 766 (2005).

    Article  Google Scholar 

  38. O. A. Antonjuk, B. M. Moldovan, M. V. Petrychuk, and V. F. Kovalenko, J. Colloid Interface Sci. 296, 577 (2006).

    Article  Google Scholar 

  39. V. F. Kovalenko, M. V. Petrychuk, B. N. Moldovan, O. A. Antonyuk, and E. F. Tkach, Funct. Mater. 13, 640 (2006).

    Google Scholar 

  40. M. Klokkenburg, R. P. A. Dullens, W. K. Kegel, B. H. Erné, and A. P. Philipse, Phys. Rev. Lett. 96, 037203 (2006).

    Article  ADS  Google Scholar 

  41. A. Yu. Zubarev and L. Yu. Iskakova, JETP 105(5), 1018 (2007).

    Article  ADS  Google Scholar 

  42. M. Yoon and D. Tomanek, J. Phys.: Condens. Matter 22, 455105 (2010).

    Article  ADS  Google Scholar 

  43. M. Klokkenburg, B. H. Erné, J. D. Meedldijk, A. Wiedenmann, A. V. Petukhov, R. P. A. Dullens, and A. P. Philipse, Phys. Rev. Lett. 97, 185702 (2006).

    Article  ADS  Google Scholar 

  44. R. Toussaint, G. Helgesen, and E. G. Flekkoy, Phys. Rev. Lett. 93, 108304 (2004).

    Article  ADS  Google Scholar 

  45. L. D. Landau and E. M. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935); L. D. Landau, Collection of Works (Nauka, Moscow, 1969), Vol. 1, p. 128 [in Russian].

    MATH  Google Scholar 

  46. V. G. Bar’yakhtar, V. M. Loktev, and S. M. Ryabchenko, Sov. Phys. JETP 61(5), 1040 (1985).

    Google Scholar 

  47. W. Wernsdorfer, Adv. Chem. Phys. 118, 99 (2001).

    Article  Google Scholar 

  48. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Butterworth-Heinemann, Oxford, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Ivanov.

Additional information

Original Russian Text © S.A. Dzian, B.A. Ivanov, 2012, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 142, No. 5, pp. 969–981.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dzian, S.A., Ivanov, B.A. Dynamics and stability of a linear cluster of spherical magnetic nanoparticles. J. Exp. Theor. Phys. 115, 854–865 (2012). https://doi.org/10.1134/S1063776112110039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112110039

Keywords

Navigation