Skip to main content
Log in

Kinetics and energy states of nanoclusters in the initial stage of homogeneous condensation at high supersaturation degrees

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The condensation of metal vapor in an inert gas is studied by the molecular dynamics method. Two condensation regimes are investigated: with maintenance of partial pressure of the metal vapor and with a fixed number of metal atoms in the system. The main focus is the study of the cluster energy distribution over the degrees of freedom and mechanisms of the establishment of thermal equilibrium. It is shown that the internal temperature of a cluster considerably exceeds the buffer gas temperature and the thermal balance is established for a time considerably exceeding the nucleation time. It is found that, when the metal vapor concentration exceeds 0.1 of the argon concentration, the growth of clusters with the highest possible internal energy occurs, the condensation rate being determined only by the rate of heat removal from clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Inorganic Nanoparticles, Ed. by C. Altavilla and E. Ciliberto (CRC Press, New York, 2011).

    Google Scholar 

  2. C. G. Granqvist and R. A. Buhrman, J. Appl. Phys. 47, 2200 (1976).

    Article  ADS  Google Scholar 

  3. K. Sattler, J. Muhlbach, and E. Recknagel, Phys. Rev. Lett. 45, 821 (1980).

    Article  ADS  Google Scholar 

  4. A. Simchi, R. Ahmadi, S. M. S. Reihani, and A. Mahdavi, Mater. Des. 28, 850 (2007).

    Article  Google Scholar 

  5. I. V. Frishberg, L. I. Kvater, B. P. Kuz’min, and S. V. Gribovskii, The Gas-Phase Method of Obtaining Powders (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  6. M. Volmer and A. Weber, Z. Phys. Chem. 119, 227 (1926).

    Google Scholar 

  7. R. Becker and W. Doring, Ann. Phys. (Weinheim) 24, 719 (1935).

    ADS  MATH  Google Scholar 

  8. Ya. B. Zel’dovich, Zh. Eksp. Teor. Fiz. 12, 525 (1942).

    Google Scholar 

  9. Ya. I. Frenkel’, Zh. Eksp. Teor. Fiz. 9, 952 (1939).

    Google Scholar 

  10. K. Yasuoka and M. Matsumoto, J. Chem. Phys. 109, 8451 (1998).

    Article  ADS  Google Scholar 

  11. V. I. Kalikmanov, J. Wolk, and T. Kraska, J. Chem. Phys. 128, 124506 (2008).

    Article  ADS  Google Scholar 

  12. B. J. Alder and T. E. Wainwright, J. Chem. Phys. 31, 459 (1960).

    Article  MathSciNet  ADS  Google Scholar 

  13. A. S. Barnard, Rep. Prog. Phys. 73, 086502 (2010).

    Article  ADS  Google Scholar 

  14. F. Baletto and R. Ferrando, Rev. Mod. Phys. 77(1), 371 (2005).

    Article  ADS  Google Scholar 

  15. S. L. Gafner, S. V. Kosterin, and Yu. Ya. Gafner, Phys. Solid State 49(8), 1558 (2007).

    Article  ADS  Google Scholar 

  16. Y. Wang, S. Teitel, and C. Dellago, J. Chem. Phys. 122, 214722 (2005).

    Article  ADS  Google Scholar 

  17. Yu. Ya. Gafner, S. L. Gafner, and I. V. Chepkasov, JETP 111(4), 608 (2010).

    Article  ADS  Google Scholar 

  18. S. L. Gafner and Yu. Ya. Gafner, JETP 107(4), 712 (2008).

    Article  ADS  Google Scholar 

  19. P. Krasnochtchekov and R. S. Averback, J. Chem. Phys. 122, 044319 (2005).

    Article  ADS  Google Scholar 

  20. F. Romer and T. Kraska, J. Chem. Phys. 127, 234509 (2007).

    Article  ADS  Google Scholar 

  21. E. Kesala, A. Kuronen, and K. Nordlund, Phys. Rev. B: Condens. Matter 75, 174121 (2007).

    Article  ADS  Google Scholar 

  22. J. Westergren, H. Grönbeck, S.-G. Kim, and D. Tománek, J. Chem. Phys. 107, 3071 (1997).

    Article  ADS  Google Scholar 

  23. K. Yasuoka and X. C. Zeng, J. Chem. Phys. 126, 124320 (2007).

    Article  ADS  Google Scholar 

  24. S. Braun, F. Römer, and T. Kraska, J. Chem. Phys. 131, 064308 (2009).

    Article  ADS  Google Scholar 

  25. N. Lümmen and T. Kraska, Comput. Mater. Sci. 35, 210 (2006).

    Article  Google Scholar 

  26. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  MATH  Google Scholar 

  27. S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B: Condens. Matter 33, 7983 (1986).

    Article  ADS  Google Scholar 

  28. H. C. Andersen, J. Chem. Phys. 72, 2384 (1972).

    Article  ADS  Google Scholar 

  29. S. Nose, J. Chem. Phys. 81, 511 (1984).

    Article  ADS  Google Scholar 

  30. I. V. Maltsev, A. A. Mirzoev, D. A. Danilov, and B. Nestler, Modell. Simul. Mater. Sci. Eng. 17, 055006 (2009).

    Article  ADS  Google Scholar 

  31. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997).

    Google Scholar 

  32. F. H. Stillinger, J. Chem. Phys. 38, 1486 (1963).

    Article  ADS  Google Scholar 

  33. M. P. Allen and D. J. Tildesly, Computer Simulation of Liquids (Clarendon, Oxford, 1990).

    Google Scholar 

  34. A. G. Vorontsov, Vestn. Yuzhno-Ural. Gos. Univ., Ser. “Mat. Mekh. Fiz.,” No. 1, 39 (2009).

  35. B. R. Gel’chinskii, A. G. Vorontsov, A. E. Korenchenko, and L. I. Leont’ev, Dokl. Phys. Chem. 436(Part 2), 15 (2011).

    Article  Google Scholar 

  36. A. G. Vorontsov, B. R. Gel’chinskii, and A. E. Korenchenko, Vestn. Yuzhno-Ural. Gos. Univ., Ser. “Mat. Mekh. Fiz.,” No. 4, 61 (2011).

  37. Handbook of the Physicochemical Properties of the Elements, Part 1: Physical Properties, Ed. by G. V. Samsonov (Plenum, New York, 1968; Metallurgiya, Moscow, 1976).

    Google Scholar 

  38. S. M. Thompson, K. E. Gubbins, J. Walton, R. A. R. Chantry, and J. S. Rowlinson, J. Chem. Phys. 81, 530 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Vorontsov.

Additional information

Original Russian Text © A.G. Vorontsov, B.R. Gel’chinskii, A.E. Korenchenko, 2012, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 142, No. 5, pp. 897–907.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorontsov, A.G., Gel’chinskii, B.R. & Korenchenko, A.E. Kinetics and energy states of nanoclusters in the initial stage of homogeneous condensation at high supersaturation degrees. J. Exp. Theor. Phys. 115, 789–797 (2012). https://doi.org/10.1134/S1063776112100160

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112100160

Keywords

Navigation