Skip to main content
Log in

Calculation of spectral and Rosseland paths in a plasma with multiply charged ions based on a statistical approach

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The semiclassical approach to determine the Fourier components of the electron dipole moment disregarding polarization (noninteracting electron model) is used for analyzing ion oscillator strengths and determining the radiation properties of plasmas consisting of multiply charged ions of heavy elements. The oscillator strength distribution df/dω (proportional to the photoabsorption cross section) is calculated as a function of the degree of ionization and self-similar frequency Ω = ω/Z. It is found that for low degrees of ionization, function df/dω for an ion is close to function df/dω for a neutral atom; upon an increase in the degree of ionization, regions are formed in which df/dω = 0 (transparency windows) and the photoabsorption cross section for high degrees of ionization differs from zero only in small frequency ranges. The resultant distribution of the ion oscillator strengths is used for calculating the polarizability of ions as a function of frequency and the cross section of radiation scattering on ions. For a gold plasma, the absorbance and opacity (both spectral and averaged according to Rosseland and Planck) are calculated. The results of computing the paths and absorption coefficients coincide in order of magnitude with the available data. The effect of scattering on the Rosseland path is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic, New York, 1967).

    Google Scholar 

  2. D. A. Frank-Kamenetskii, Physical Processes in Stellar Interiors (Fizmatgiz, Moscow, 1959; Israel Program for Scientific Translations, Jerusalem, 1962).

    Google Scholar 

  3. J. E. Bailey, G. A. Rochau, R. C. Mancini, C. A. Iglesias, J. J. MacFarlane, I. E. Golovkin, C. Blancard, Ph. Cosse, and G. Faussurier, Phys. Plasmas 16, 058101(16) (2009).

    Article  ADS  Google Scholar 

  4. J. J. Duderstadt and G. A. Moses, Inertial Confinement Fusion (Wiley, New York, 1982; Energoatomizdat, Moscow, 1984).

    Google Scholar 

  5. M. K. Matzen, C. Deeney, R. J. Leeper, J. L. Porter, R. B. Spielman, G. A. Chandler, M. S. Derzon, M. R. Douglas, D. L. Fehl, D. E. Hebron, T. J. Nash, R. E. Olson, L. E. Ruggles, T. W. L. Sanford, J. F. Seamen, K. W. Struve, W. A. Stygar, and D. L. Peterson, Plasma Phys. Controlled Fusion 41(Suppl. 3A), A175 (1999).

    Article  ADS  Google Scholar 

  6. S. F. Garanin, V. I. Mamyshev, and V. B. Yakubov, IEEE Trans. Plasma Sci. 34, 2273 (2006).

    Article  ADS  Google Scholar 

  7. S. F. Garanin, IEEE Trans. Plasma Sci. 38, 1850 (2010).

    Article  ADS  Google Scholar 

  8. A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, Quantum-Statistical Models of Hot Dense Matter: Methods for Computation Opacity and Equation of State (Nauka, Moscow, 2000; Birkhäuser, Basel, 2005).

    Google Scholar 

  9. V. S. Imshennik, I. N. Mikhailov, M. M. Basko, and S. V. Molodtsov, Sov. Phys. JETP 63(5), 980 (1986).

    Google Scholar 

  10. S. F. Garanin, Tr. Ross. Fed. Yad. Tsentra-Vseross. Nauchno-Issled. Inst. Eksp. Fiz., No. 1, 62 (2001).

  11. S. F. Garanin, High Temp. 41(4), 421 (2003).

    Article  Google Scholar 

  12. S. F. Garanin and E. M. Palagina, JETP 98(6), 1098 (2004).

    Article  ADS  Google Scholar 

  13. S. F. Garanin and E. M. Palagina, JETP 104(4), 527 (2007).

    Article  ADS  Google Scholar 

  14. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Butterworth-Heinemann, Oxford, 1984).

    Google Scholar 

  15. V. V. Ivanov, A. B. Kukushkin, and V. I. Kogan, Sov. J. Plasma Phys. 15(12), 892 (1989).

    Google Scholar 

  16. V. I. Gervids, V. P. Zhdanov, V. I. Kogan, B. A. Trubnikov, and M. I. Chibisov, Vopr. Teor. Plazmy, No. 12, 58 (1982).

  17. V. I. Kogan and A. B. Kukushkin, Sov. Phys. JETP 60(4), 665 (1984).

    Google Scholar 

  18. V. I. Kogan, A. B. Kukushkin, and V. S. Lisitsa, Phys. Rep. 213, 1 (1992).

    Article  ADS  Google Scholar 

  19. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Nauka, Moscow, 1973; Butterworth-Heinemann, Oxford, 1976).

    Google Scholar 

  20. D. E. Post, R. V. Jensen, C. B. Tarter, W. H. Grassberger, and W. A. Lokke, At. Data Nucl. Data Tables 20, 397 (1977).

    Article  ADS  Google Scholar 

  21. S. F. Garanin, E. M. Kravets, V. I. Mamyshev, and V. A. Tokarev, Plasma Phys. Rep. 35(8), 684 (2009).

    Article  ADS  Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1967; Butterworth-Heinemann, Oxford, 1971).

    Google Scholar 

  23. T. A. Carlson, C. W. Nestor, Jr., N. Wasserman, and J. D. McDowell, At. Data 2, 63 (1970).

    Article  ADS  Google Scholar 

  24. S. A. Kholin, in High Energy Densities: Collection of Scientific Papers, Ed. by V. N. Mokhov, R. F. Trunin, V. M. Gorbachev, L. A. Il’kaeva, and E. V. Kulichkova (Russian Federal Nuclear Center-The All-Russian Research Institute of Experimental Physics, Sarov, Nizhni Novgorod oblast, Russia, 1997), Vol. 12, p. 344 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Garanin.

Additional information

Original Russian Text © S.F. Garanin, E.M. Kravets, 2012, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 142, No. 5, pp. 1052–1066.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garanin, S.F., Kravets, E.M. Calculation of spectral and Rosseland paths in a plasma with multiply charged ions based on a statistical approach. J. Exp. Theor. Phys. 115, 925–937 (2012). https://doi.org/10.1134/S1063776112100147

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112100147

Keywords

Navigation