Skip to main content
Log in

Effect of heteroboundary spreading on the properties of exciton states in Zn(Cd)Se/ZnMgSSe quantum wells

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Exciton states in Zn(Cd)Se/ZnMgSSe quantum wells with different diffusion spreading of interfaces are studied by optical spectroscopy methods. It is shown that the emission spectrum of quantum wells at low temperatures is determined by free excitons and bound excitons on neutral donors. The nonlinear dependence of the stationary photoluminescence intensity on the excitation power density and the biexponential luminescence decay are explained by the neutralization of charged defects upon photoexcitation of heterostructures. With the stationary illumination on, durable (about 40 min) reversible changes in the reflection coefficient near the exciton resonances of quantum wells are observed. It is shown that, along with the shift of exciton levels, the spreading of heteroboundaries leads to three effects: an increase in the excitonphonon interaction, an increase in the energy shift between the emission lines of free and bound excitons, and a decrease in the decay time of exciton luminescence in a broad temperature range. The main reasons for these effects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Platonov, V. P. Kochereshko, E. L. Ivchenko, G. V. Mikhailov, D. R. Yakovlev, M. Keim, W. Ossau, A. Waag, and G. Landwehr, Phys. Rev. Lett. 83, 3546 (1999).

    Article  ADS  Google Scholar 

  2. A. S. Gurevich, V. P. Kochereshko, A. V. Platonov, A. Baar, D. R. Yakovlev, and G. Landwehr, Phys. Solid State (St. Petersburg) 46(4), 780 (2004).

    Article  ADS  Google Scholar 

  3. D. R. Yakovlev, A. V. Platonov, E. L. Ivchenko, V. P. Kochereshko, C. Sas, W. Ossau, L. Hansen, A. Waag, G. Landwehr, and L. W. Molenkamp, Phys. Rev. Lett. 88, 257401 (2002).

    Article  ADS  Google Scholar 

  4. A. S. Gurevich, V. P. Kochereshko, A. V. Platonov, B. A. Zyakin, A. Waag, and G. Landwehr, Phys. Solid State (St. Petersburg) 47(10), 1964 (2005).

    Article  ADS  Google Scholar 

  5. W. Grieshaber, A. Haury, J. Cibert, Y. Merle d’Aubigné, A. Wasiela, and J. A. Gaj, Phys. Rev. B: Condens. Matter 53, 4891 (1996).

    Article  ADS  Google Scholar 

  6. A. Ishibashi and Y. Mori, J. Cryst. Growth 138, 677 (1994).

    Article  ADS  Google Scholar 

  7. M. A. Haase, J. Qiu, J. M. DePuydt, and H. Cheng, Appl. Phys. Lett. 59(11), 1272 (1991).

    Article  ADS  Google Scholar 

  8. H. Okuyama, T. Miyajima, Y. Morinaga, F. Hiei, M. Ozawa, and K. Akimoto, Electron. Lett. 28(19), 1798 (1992).

    Article  ADS  Google Scholar 

  9. S. Itoh, K. Nakano, and A. Ishibashi, J. Cryst. Growth 214/215, 1029 (2000).

    Article  Google Scholar 

  10. M. Straβburg, M. Kuttler, U. W. Pohl, and D. Bimberg, Thin Solid Films 336, 208 (1998).

    Article  ADS  Google Scholar 

  11. M. Y. A. Raja, S. R. J. Brueck, M. Osinski, C. F. Schaus, J. G. McInerney, T. M. Brennan, and B. E. Hammons, IEEE J. Quantum Electron. 25, 1500 (1989).

    Article  ADS  Google Scholar 

  12. V. I. Kozlovsky, E. A. Shcherbakov, E. M. Dianov, A. B. Krysa, A. S. Nasibov, and P. A. Trubenko, J. Cryst. Growth 159, 609 (1996).

    Article  ADS  Google Scholar 

  13. P. I. Kuznetsov, G. G. Yakushcheva, V. A. Jitov, L. Yu. Zakharov, V. I. Kozlovsky, and D. A. Sannikov, in Proceedings of the Fifth Belarusian-Russian Workshop “Semiconductor Lasers and Systems,” Minsk, Belarus, June 1–5, 2005 (Minsk, 2005), p. 223.

  14. V. I. Kozlovsky and V. P. Martovitsky, Physica B (Amsterdam) 404(23–24), 5009 (2009).

    ADS  Google Scholar 

  15. M. D. Tibery, V. I. Kozlovsky, and P. I. Kuznetsov, Phys. Status Solidi B 247(6), 1547 (2010).

    Article  ADS  Google Scholar 

  16. G. Kudlek and J. Gutowski, J. Lumin. 52(1–4), 55 (1992).

    Article  Google Scholar 

  17. H. Mathieu, P. Lefebvre, and P. Christol, Phys. Rev. B: Condens. Matter 46, 4092 (1992).

    Article  ADS  Google Scholar 

  18. A. Venu Gopal, R. Kumar, A. S. Vengurlekar, A. Bosacchi, S. Franchi, and L. N. Pfeiffer, J. Appl. Phys. 87, 1858 (2000).

    Article  ADS  Google Scholar 

  19. J. Puls, M. Rabe, A. Siarkos, and F. Henneberger, Phys. Rev. B: Condens. Matter 57, 14749 (1998).

    Article  ADS  Google Scholar 

  20. S. A. Crooker, E. Johnston-Halperin, D. D. Awschalom, R. Knobel, and N. Samarth, Phys. Rev. B: Condens. Matter 61, R16307 (2000).

    Article  ADS  Google Scholar 

  21. A. Esser, E. Runge, R. Zimmermann, and W. Langbein, Phys. Rev. B: Condens. Matter 62, 8232 (2000).

    Article  ADS  Google Scholar 

  22. H. P. Wagner, A. Sch↦z, R. Maier, W. Langbein, and J. M. Hvam, Phys. Rev. B: Condens. Matter 57, 1791 (1998).

    Article  ADS  Google Scholar 

  23. Excitons, Ed. by E. I. Rashba and M. D. Sturge (NorthHolland, Amsterdam, 1982; Nauka, Moscow, 1985).

    Google Scholar 

  24. P. O. Holtz, B. Monemar, and H. J. Loykowski, Phys. Rev. B: Condens. Matter 32, 986 (1985).

    Article  ADS  Google Scholar 

  25. A. Pawlis, M. Panfilova, D. J. As, K. Lischka, K. Sanaka, T. D. Ladd, and Y. Yamamoto, Phys. Rev. B: Condens. Matter 77, 153304 (2008).

    Article  ADS  Google Scholar 

  26. G. V. Astakhov, D. R. Yakovlev, V. P. Kochereshko, W. Ossau, W. Faschinger, J. Puls, F. Henneberger, S. A. Crooker, Q. McCulloch, D. Wolverson, N. A. Gippius, and A. Waag, Phys. Rev. B: Condens. Matter 65, 165335 (2002).

    Article  ADS  Google Scholar 

  27. P. J. Dean, D. C. Herbert, C. J. Werkhoven, B. J. Fitzpatrick, and R. N. Bhargava, Phys. Rev. B: Condens. Matter 23, 4888 (1981).

    Article  ADS  Google Scholar 

  28. P. J. Dean, W. Stutius, G. F. Neumark, B. J. Fitzpatrick, and R. N. Bhargava, Phys. Rev. B: Condens. Matter 27, 2419 (1983).

    Article  ADS  Google Scholar 

  29. T. Lebihen, A. Filoramo, E. Deleporte, J. Martinez-Pastor, Ph. Roussignol, C. Delalande, M. Zigone, and G. Martinez, Phys. Rev. B: Condens. Matter 55, 9915 (1996).

    Article  ADS  Google Scholar 

  30. J. P. Bergman, P. O. Holtz, B. Monemar, M. Sundaram, J. L. Merz, and A. C. Gossard, Phys. Rev. B: Condens. Matter 43, 4765 (1991).

    Article  ADS  Google Scholar 

  31. Y. Takahashi, S. S. Kano, K. Muraki, S. Fukatsu, Y. Shiraki, and R. Ito, Appl. Phys. Lett. 64, 1845 (1994).

    Article  ADS  Google Scholar 

  32. D. Sanvitto, R. A. Hogg, A. J. Shields, D. M. Whittaker, M. Y. Simmons, D. A. Ritchie, and M. Pepper, Phys. Rev. B: Condens. Matter 62, R13294 (2000).

  33. D. Bajoni, M. Perrin, P. Senellart, A. Lemaĭtre, B. Sermage, and J. Bloch, Phys. Rev. B: Condens. Matter 73, 205344 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Adiyatullin.

Additional information

Original Russian Text © A.F. Adiyatullin, V.V. Belykh, V.I. Kozlovsky, V.S. Krivobok, V.P. Martovitsky, S.N. Nikolaev, 2012, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 142, No. 5, pp. 1005–1019.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adiyatullin, A.F., Belykh, V.V., Kozlovsky, V.I. et al. Effect of heteroboundary spreading on the properties of exciton states in Zn(Cd)Se/ZnMgSSe quantum wells. J. Exp. Theor. Phys. 115, 885–896 (2012). https://doi.org/10.1134/S1063776112090014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112090014

Keywords

Navigation