The formation of correlated states and the increase in barrier transparency at a low particle energy in nonstationary systems with damping and fluctuations

Abstract

We consider peculiarities in the formation of a coherent correlated state (CCS) of a particle in a periodically modulated harmonic oscillator with damping for various types of stochastic perturbation. It is shown that in the absence of stochastic perturbation, an optimal relation exists between the damping parameter (damping coefficient) and the modulation depth, for which the “extrinsic” characteristics of the oscillator (amplitudes of “classical” oscillation and the momentum of a particle) remain unchanged, while the correlation coefficient rapidly increases from |r| = 0 to |r|max ≈ 1; this corresponds to a completely correlated coherent state. Under nonoptimal conditions, the formation of the CCS with a simultaneous increase in is accompanied by damping or excitation of the oscillator. It is shown that for a certain relation between the damping coefficient and the modulation depth, the presence of a stochastic external force acting on the nonstationary oscillator does not prevent the formation of a CCS with |r|max → 1. A fundamentally different effect is observed under a stochastic influence on the nonstationary frequency of the oscillator; this effect always limits the value of |r| at a level |r|max < 1; a CCR cannot be formed with an unlimited increase in its intensity, and |r|max → 0. The influence of the CCS formation on the averaged probability 〈D〉 of the tunnel effect (transparency of the potential barrier) is considered for a particle in an oscillator with damping both in the absence and in the presence of a stochastic force. It is shown using a specific example that complete clearing of the potential barrier and the increase in the barrier transparency from the initial value 〈D r=0〉 = 10−80 to 〈D〉 ≈ 1 can occur over a comparatively short time interval in both these cases. These effects can be used to obtain highly efficient nuclear fusion at a low energy of interacting particles.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    V. V. Dodonov and V. I. Man’ko, Tr. Fiz. Inst. im. P. N. Lebedeva, Akad. Nauk SSSR 183, 71 (1987).

    MathSciNet  Google Scholar 

  2. 2.

    V. V. Dodonov, A. B. Klimov, and V. I. Man’ko, Tr. Fiz. Inst. im. P. N. Lebedeva, Akad. Nauk SSSR 200, 56 (1991).

    MathSciNet  Google Scholar 

  3. 3.

    V. I. Vysotskii and S. V. Adamenko, Tech. Phys. 55(5), 613 (2010).

    Article  Google Scholar 

  4. 4.

    V. I. Vysotskii, M. V. Vysotskyy, and N. V. Maksyuta, Poverkhnost 4(4), 696 (2010).

    Google Scholar 

  5. 5.

    V. I. Vysotskii, M. V. Vysotskyy, and S. V. Adamenko, JETP 114(2), 243 (2012).

    ADS  Article  Google Scholar 

  6. 6.

    E. Schrödinger, Sitzungsber. Akad. Wiss. Berlin 24, 296 (1930).

    Google Scholar 

  7. 7.

    H. P. Robertson, Phys. Rev. A: At., Mol., Opt. Phys. 35, 667 (1930).

    Google Scholar 

  8. 8.

    D. Bohm, Quantum Theory (Prentice Hall, New York, 1951; Nauka, Moscow, 1965).

    Google Scholar 

  9. 9.

    B. N. Zakhar’ev and V. N. Chabanov, Submissive Quantum Mechanics: New Status of the Theory in Inverse Problem Approach (Regular and Chaotic Dynamics, Izhevsk, 2002; Nova Science, New York, 2008).

    Google Scholar 

  10. 10.

    H. Dekker, Phys. Rep. 80, 1 (1981).

    MathSciNet  ADS  Article  Google Scholar 

  11. 11.

    I. Averbukh, B. Sherman, and G. Kurizki, Phys. Rev. A: At., Mol., Opt. Phys. 50, 5301 (1994).

    ADS  Article  Google Scholar 

  12. 12.

    O. V. Man’ko, Nuovo Cimento B 111, 1111 (1996).

    ADS  Article  Google Scholar 

  13. 13.

    P. Caldirola, Nuovo Cimento 18(9), 393 (1941).

    Article  Google Scholar 

  14. 14.

    E. Kanai, Prog. Theor. Phys. 3, 440 (1948).

    ADS  Article  Google Scholar 

  15. 15.

    R. W. Hasse, J. Math. Phys. 16, 2005 (1975).

    ADS  Article  Google Scholar 

  16. 16.

    U. Weisse, Quantum Dissipative System (World Scientific, Singapore, 1993).

    Google Scholar 

  17. 17.

    J. R. Choi and K. H. Yeon, Ann. Phys. 323, 812 (2008).

    MathSciNet  ADS  MATH  Article  Google Scholar 

  18. 18.

    G. J. Papadopoulos, J. Phys. A: Math., Nucl. Gen. 6, 1479 (1973).

    ADS  Article  Google Scholar 

  19. 19.

    I. R. Svin’in, Theor. Math. Phys. 27 (2), 478 (1976).

    Google Scholar 

  20. 20.

    R. Alicki and J. Messer, J. Phys. A: Math. Gen. 15, 3543 (1982).

    MathSciNet  ADS  Article  Google Scholar 

  21. 21.

    V. V. Dodonov, Phys. Rev. A: At., Mol., Opt. Phys. 80, 023814 (2009).

    ADS  Article  Google Scholar 

  22. 22.

    S. M. Rytov, Principles of Statistical Radiophysics Vol. 1: Elements of Random Process Theory (Nauka, Moscow, 1978; Springer, Berlin, 1987), Chap. V.

    Google Scholar 

  23. 23.

    V. V. Dodonov, Phys. Rev. A: At., Mol., Opt. Phys. 58, 4147 (1998).

    ADS  Article  Google Scholar 

  24. 24.

    B. R. Mollow, Phys. Rev. A: At., Mol., Opt. Phys. 2, 1477 (1970).

    ADS  Article  Google Scholar 

  25. 25.

    L. Ferrari, Phys. Rev. B: Condens. Matter 56, 593 (1997).

    ADS  Article  Google Scholar 

  26. 26.

    L. Ferrari, Phys. Rev. A: At., Mol., Opt. Phys. 57, 2347 (1998).

    ADS  Article  Google Scholar 

  27. 27.

    J. Garnier, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 60, 3676 (1999).

    Article  Google Scholar 

  28. 28.

    V. Dodonov, A. B. Klimov, and V. I. Man’ko, Phys. Lett. A 220, 41 (1996).

    ADS  Article  Google Scholar 

  29. 29.

    Controlled Nucleosynthesis: Breakthroughs in Experiment and Theory, Ed. by S. V. Adamenko, F. Selleri, and A. van der Merwe (Springer, Berlin, 2007).

    Google Scholar 

  30. 30.

    T. Mizuno, T. Akimoto, A. Takahashi, and F. Celani, in Proceedings of the Eleventh International Conference on Cold Fusion, Marseilles, France, October 31–November 5, 2004 (World Scientific, Singapore, 2006), p. 312.

    Google Scholar 

  31. 31.

    J. Michell, Rossi’s eCat (Xecnet, 2011).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. I. Vysotskii.

Additional information

Original Russian Text © V.I. Vysotskii, S.V. Adamenko, M.V. Vysotskyy, 2012, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 142, No. 4, pp. 627–643.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vysotskii, V.I., Adamenko, S.V. & Vysotskyy, M.V. The formation of correlated states and the increase in barrier transparency at a low particle energy in nonstationary systems with damping and fluctuations. J. Exp. Theor. Phys. 115, 551–566 (2012). https://doi.org/10.1134/S1063776112080183

Download citation

Keywords

  • Harmonic Oscillator
  • Correlate State
  • Modulation Depth
  • Tunnel Effect
  • Stochastic Perturbation