Journal of Experimental and Theoretical Physics

, Volume 115, Issue 4, pp 551–566 | Cite as

The formation of correlated states and the increase in barrier transparency at a low particle energy in nonstationary systems with damping and fluctuations

  • V. I. Vysotskii
  • S. V. Adamenko
  • M. V. Vysotskyy
Atoms, Molecules, Optics


We consider peculiarities in the formation of a coherent correlated state (CCS) of a particle in a periodically modulated harmonic oscillator with damping for various types of stochastic perturbation. It is shown that in the absence of stochastic perturbation, an optimal relation exists between the damping parameter (damping coefficient) and the modulation depth, for which the “extrinsic” characteristics of the oscillator (amplitudes of “classical” oscillation and the momentum of a particle) remain unchanged, while the correlation coefficient rapidly increases from |r| = 0 to |r|max ≈ 1; this corresponds to a completely correlated coherent state. Under nonoptimal conditions, the formation of the CCS with a simultaneous increase in is accompanied by damping or excitation of the oscillator. It is shown that for a certain relation between the damping coefficient and the modulation depth, the presence of a stochastic external force acting on the nonstationary oscillator does not prevent the formation of a CCS with |r|max → 1. A fundamentally different effect is observed under a stochastic influence on the nonstationary frequency of the oscillator; this effect always limits the value of |r| at a level |r|max < 1; a CCR cannot be formed with an unlimited increase in its intensity, and |r|max → 0. The influence of the CCS formation on the averaged probability 〈D〉 of the tunnel effect (transparency of the potential barrier) is considered for a particle in an oscillator with damping both in the absence and in the presence of a stochastic force. It is shown using a specific example that complete clearing of the potential barrier and the increase in the barrier transparency from the initial value 〈D r=0〉 = 10−80 to 〈D〉 ≈ 1 can occur over a comparatively short time interval in both these cases. These effects can be used to obtain highly efficient nuclear fusion at a low energy of interacting particles.


Harmonic Oscillator Correlate State Modulation Depth Tunnel Effect Stochastic Perturbation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. V. Dodonov and V. I. Man’ko, Tr. Fiz. Inst. im. P. N. Lebedeva, Akad. Nauk SSSR 183, 71 (1987).MathSciNetGoogle Scholar
  2. 2.
    V. V. Dodonov, A. B. Klimov, and V. I. Man’ko, Tr. Fiz. Inst. im. P. N. Lebedeva, Akad. Nauk SSSR 200, 56 (1991).MathSciNetGoogle Scholar
  3. 3.
    V. I. Vysotskii and S. V. Adamenko, Tech. Phys. 55(5), 613 (2010).CrossRefGoogle Scholar
  4. 4.
    V. I. Vysotskii, M. V. Vysotskyy, and N. V. Maksyuta, Poverkhnost 4(4), 696 (2010).Google Scholar
  5. 5.
    V. I. Vysotskii, M. V. Vysotskyy, and S. V. Adamenko, JETP 114(2), 243 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    E. Schrödinger, Sitzungsber. Akad. Wiss. Berlin 24, 296 (1930).Google Scholar
  7. 7.
    H. P. Robertson, Phys. Rev. A: At., Mol., Opt. Phys. 35, 667 (1930).Google Scholar
  8. 8.
    D. Bohm, Quantum Theory (Prentice Hall, New York, 1951; Nauka, Moscow, 1965).Google Scholar
  9. 9.
    B. N. Zakhar’ev and V. N. Chabanov, Submissive Quantum Mechanics: New Status of the Theory in Inverse Problem Approach (Regular and Chaotic Dynamics, Izhevsk, 2002; Nova Science, New York, 2008).Google Scholar
  10. 10.
    H. Dekker, Phys. Rep. 80, 1 (1981).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    I. Averbukh, B. Sherman, and G. Kurizki, Phys. Rev. A: At., Mol., Opt. Phys. 50, 5301 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    O. V. Man’ko, Nuovo Cimento B 111, 1111 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    P. Caldirola, Nuovo Cimento 18(9), 393 (1941).CrossRefGoogle Scholar
  14. 14.
    E. Kanai, Prog. Theor. Phys. 3, 440 (1948).ADSCrossRefGoogle Scholar
  15. 15.
    R. W. Hasse, J. Math. Phys. 16, 2005 (1975).ADSCrossRefGoogle Scholar
  16. 16.
    U. Weisse, Quantum Dissipative System (World Scientific, Singapore, 1993).Google Scholar
  17. 17.
    J. R. Choi and K. H. Yeon, Ann. Phys. 323, 812 (2008).MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. 18.
    G. J. Papadopoulos, J. Phys. A: Math., Nucl. Gen. 6, 1479 (1973).ADSCrossRefGoogle Scholar
  19. 19.
    I. R. Svin’in, Theor. Math. Phys. 27 (2), 478 (1976).Google Scholar
  20. 20.
    R. Alicki and J. Messer, J. Phys. A: Math. Gen. 15, 3543 (1982).MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    V. V. Dodonov, Phys. Rev. A: At., Mol., Opt. Phys. 80, 023814 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    S. M. Rytov, Principles of Statistical Radiophysics Vol. 1: Elements of Random Process Theory (Nauka, Moscow, 1978; Springer, Berlin, 1987), Chap. V.Google Scholar
  23. 23.
    V. V. Dodonov, Phys. Rev. A: At., Mol., Opt. Phys. 58, 4147 (1998).ADSCrossRefGoogle Scholar
  24. 24.
    B. R. Mollow, Phys. Rev. A: At., Mol., Opt. Phys. 2, 1477 (1970).ADSCrossRefGoogle Scholar
  25. 25.
    L. Ferrari, Phys. Rev. B: Condens. Matter 56, 593 (1997).ADSCrossRefGoogle Scholar
  26. 26.
    L. Ferrari, Phys. Rev. A: At., Mol., Opt. Phys. 57, 2347 (1998).ADSCrossRefGoogle Scholar
  27. 27.
    J. Garnier, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 60, 3676 (1999).CrossRefGoogle Scholar
  28. 28.
    V. Dodonov, A. B. Klimov, and V. I. Man’ko, Phys. Lett. A 220, 41 (1996).ADSCrossRefGoogle Scholar
  29. 29.
    Controlled Nucleosynthesis: Breakthroughs in Experiment and Theory, Ed. by S. V. Adamenko, F. Selleri, and A. van der Merwe (Springer, Berlin, 2007).Google Scholar
  30. 30.
    T. Mizuno, T. Akimoto, A. Takahashi, and F. Celani, in Proceedings of the Eleventh International Conference on Cold Fusion, Marseilles, France, October 31–November 5, 2004 (World Scientific, Singapore, 2006), p. 312.Google Scholar
  31. 31.
    J. Michell, Rossi’s eCat (Xecnet, 2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. I. Vysotskii
    • 1
    • 2
  • S. V. Adamenko
    • 2
  • M. V. Vysotskyy
    • 1
  1. 1.Taras Shevchenko National UniversityKievUkraine
  2. 2.Electrodynamic Laboratory “Proton-21”KievUkraine

Personalised recommendations