Skip to main content
Log in

Generation of displaced squeezed superpositions of coherent states

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the method of generation of states that approximate superpositions of large-amplitude coherent states (SCSs) with high fidelity in free-traveling fields. Our approach is based on the representation of an arbitrary single-mode pure state, and SCSs in particular, in terms of displaced number states with an arbitrary displacement amplitude. The proposed optical scheme is based on alternation of photon additions and displacement operators (in the general case, N photon additions and N − 1 displacements are required) with a seed coherent state to generate both even and odd displaced squeezed SCSs regardless of the parity of the used photon additions. It is shown that the optical scheme studied is sensitive to the seed coherent state if the other parameters are unchanged. Output states can approximate either even squeezed SCS or odd SCS shifted relative to each other by some value. This allows constructing a local rotation operator, in particular, the Hadamard gate, which is a mainframe element for quantum computation with coherent states. We also show that three-photon additions with two intermediate displacement operators are sufficient to generate even displaced squeezed SCS with the amplitude 1.7 and fidelity more than 0.99. The effects deteriorating the quality of output states are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Yurke, Phys. Rev. Lett. 56, 1515 (1986); B. Yurke, S. L. McCall, and J. R. Klauder, Phys. Rev. A: At., Mol., Opt. Phys. 33, 4033 (1986); M. Hillery and L. Mlodinow, Phys. Rev. A: At., Mol., Opt. Phys. 48, 1548 (1993); J. P. Dowling, Phys. Rev. A: At., Mol., Opt. Phys. 57, 4736 (1998).

    Article  ADS  Google Scholar 

  2. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, Phys. Rev. Lett. 85, 2733 (2000); G. Björk, L. L. Sanchez-Soto, and J. Söderholm, Phys. Rev. Lett. 86, 4516 (2001).

    Article  ADS  Google Scholar 

  3. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, Berlin, 2000).

    MATH  Google Scholar 

  4. E. Schrödinger, Naturwissenschaften 23, 807, 823, 844 (1935).

    Article  ADS  Google Scholar 

  5. V. V. Dodonov, I. A. Malkin, and V. I. Manko, Physica (Amsterdam) 72, 597 (1974); I. A. Malkin and V. I. Manko, Dynamical Symmetries and Coherent States of Quantum Systems (Nauka, Moscow, 1979) [in Russian].

    Article  MathSciNet  ADS  Google Scholar 

  6. M. D. Reid, arXiv:quant-ph/0101052.

  7. W. Schleich, M. Pernigo, and F. L. Kien, Phys. Rev. A: At., Mol., Opt. Phys. 44, 2172 (1991).

    Article  ADS  Google Scholar 

  8. B. Yurke and D. Stoler, Phys. Rev. Lett. 57, 13 (1986); C. C. Gerry, Phys. Rev. A: At., Mol., Opt. Phys. 59, 4095 (1999).

    Article  ADS  Google Scholar 

  9. M. Dakna, T. Anhut, T. Opatrn, L. Knöll, and D.-G. Welsch, Phys. Rev. A: At., Mol., Opt. Phys. 55, 3184 (1997).

    Article  ADS  Google Scholar 

  10. A. P. Lund, H. Jeong, T. C. Ralph, and M. S. Kim, Phys. Rev. A: At., Mol., Opt. Phys. 70, 020101(R) (2004).

    Article  ADS  Google Scholar 

  11. A. M. Lance, H. Jeong, N. B. Grosse, T. Symul, T. C. Ralph, and P. K. Lam, Phys. Rev. A: At., Mol., Opt. Phys. 73, 041801(R) (2006).

    Article  ADS  Google Scholar 

  12. H. Jeong, A. M. Lance, N. B. Grosse, T. Symul, P. K. Lam, and T. C. Ralph, Phys. Rev. A: At., Mol., Opt. Phys. 74, 033813 (2006).

    Article  ADS  Google Scholar 

  13. H. Jeong, A. P. Lund, and T. C. Ralph, Phys. Rev. A: At., Mol., Opt. Phys. 72, 013801 (2005).

    Article  ADS  Google Scholar 

  14. S. Kim, E. Park, P. L. Knight, and H. Jeong, Phys. Rev. A: At., Mol., Opt. Phys. 71, 043805 (2005); S. Olivares and M. G. A. Paris, J. Opt. B: Quantum Semiclassical Opt. 7, S616 (2005); Laser Phys. 16, 1533 (2006); S. Suzukia, K. Tsujinoa, F. Kannarib, and M. Sasaki, Opt. Commun. 259, 758 (2006).

    Article  ADS  Google Scholar 

  15. J. Wenger, R. Tualle-Brouri, and P. Grangier, Phys. Rev. Lett. 92, 153601 (2004); A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and Ph. Grangier, Nature (London) 312, 83 (2006); J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, Phys. Rev. Lett. 97, 083604 (2006); K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, Opt. Express 15, 3568 (2007).

    Article  ADS  Google Scholar 

  16. A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, and Ph. Grangier, Nature (London) 448, 784 (2007).

    Article  ADS  Google Scholar 

  17. P. Marek and M. S. Kim, Phys. Rev. A: At., Mol., Opt. Phys. 78, 022309 (2008).

    Article  ADS  Google Scholar 

  18. P. Marek, H. Jeong, and M. S. Kim, Phys. Rev. A: At., Mol., Opt. Phys. 78, 063811 (2008).

    Article  ADS  Google Scholar 

  19. M. Sasaki, M. Takeoka, and H. Takahashi, Phys. Rev. A: At., Mol., Opt. Phys. 77, 063840 (2008); M. Takeoka, H. Takahashi, and M. Sasaki, Phys. Rev. A: At., Mol., Opt. Phys. 77, 062315 (2008).

    Article  ADS  Google Scholar 

  20. H. Takahashi, K. Wakui, S. Suzuki, M. Takeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, arXiv:0806.2965.

  21. T. Gerris, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, arXiv:1004.2727(quant-ph).

  22. M. Dakna, J. Clausen, L. Knöll, and D.-G. Welsch, Phys. Rev. A: At., Mol., Opt. Phys. 59, 1658 (1999).

    Article  ADS  Google Scholar 

  23. S. A. Podoshvedov, JETP 112(4), 551 (2011).

    Article  ADS  Google Scholar 

  24. S. A. Podoshvedov and J. Kim, Phys. Rev. A: At., Mol., Opt. Phys. 77, 032319 (2008); S. A. Podoshvedov, Phys. Rev. A: At., Mol., Opt. Phys. 79, 012319 (2009).

    Article  ADS  Google Scholar 

  25. S. A. Podoshvedov, JETP 110(4), 576 (2010).

    Article  ADS  Google Scholar 

  26. A. L. Lvovsky, H. Hausen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, Phys. Rev. Lett. 87, 050402 (2001); A. I. Lvovsky and S. A. Babischev, Phys. Rev. A: At., Mol., Opt. Phys. 66, 011801(R) (2002).

    Article  ADS  Google Scholar 

  27. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, Berlin, 1994).

    MATH  Google Scholar 

  28. A. Zavatta, S. Viciani, and M. Bellini, Science (Washington) 306, 660 (2004); A. Zavatta, S. Viciani, and M. Bellini, Phys. Rev. A: At., Mol., Opt. Phys. 70, 053821 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Podoshvedov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podoshvedov, S.A. Generation of displaced squeezed superpositions of coherent states. J. Exp. Theor. Phys. 114, 451–464 (2012). https://doi.org/10.1134/S1063776112020288

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112020288

Keywords

Navigation