Skip to main content
Log in

Orbital motion of dust particles in an rf magnetron discharge. Ion drag force or neutral atom wind force

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Microparticles with sizes up to 130 μm have been confined and the velocity and diameter of particles in a plasma trap of an rf magnetron discharge with an arc magnetic field have been simultaneously measured. The motion of the gas induced by electron and ion cyclotron currents has been numerically simulated using the Navier-Stokes equation. The experimental and numerical results confirm the mechanism of the orbital motion of dust particles in the magnetron discharge plasma that is associated with the orbital motion of the neutral gas accelerated by electron and ion drift flows in crossed electric and magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. F. Petrov, Phys.—Usp. 47(5), 427 (2004).

    Article  ADS  Google Scholar 

  2. N. Sato, AIP Conf. Proc. 799, 97 (2005).

    Article  ADS  Google Scholar 

  3. V. N. Tsytovich, N. Sato, and G. E. Morfill, New J. Phys. 5, 43 (2003).

    Article  ADS  Google Scholar 

  4. V. Tsytovich and S. Vladimirov, IEEE Trans. Plasma Sci. 32, 659 (2004).

    Article  ADS  Google Scholar 

  5. I. H. Hutchinson, New J. Phys. 6, 43 (2004).

    Article  ADS  Google Scholar 

  6. G. S. Selwyn, J. E. Heidenreich, and K. L. Haller, J. Vac. Sci. Technol., A 9, 2817 (1991).

    Article  ADS  Google Scholar 

  7. G. V. Paeva, R. P. Dahiya, G. M. W. Kroesen, and W. W. Stoffels, IEEE Trans. Plasma Sci. 32, 601 (2004).

    Article  ADS  Google Scholar 

  8. A. V. Filippov, A. F. Pal, A. N. Ryabinkin, A. O. Serov, and A. N. Starostin, in Proceedings of the Second International Conference on the Physics of Dusty and Burning Plasmas, Odessa, Ukraine, August 26–30, 2007 (Odessa, 2007), p. 55.

  9. M. Klindworth, A. Melzer, A. Piel, and V. A. Schweigert, Phys. Rev. B: Condens. Matter 61, 8404 (2000).

    Article  ADS  Google Scholar 

  10. B. M. Annaratone and G. E. Morfill, J. Phys. D: Appl. Phys. 36, 2853 (2003).

    Article  ADS  Google Scholar 

  11. S. I. Krasheninnikov, V. I. Shevchenko, and P. K. Shukla, Phys. Lett. A 361, 133 (2007).

    Article  ADS  Google Scholar 

  12. G. Uchida, R. Ozaki, S. Iizuka, and N. Sato, in Proceedings of the 25th European Physical Society (EPS) Conference on Controlled Fusion and Plasma Physics, Prague, Czech Republic, June 29–July 3, 1998 (Prague, 1998), p. 2557.

  13. U. Konopka, V. Samsonov, A. V. Ivlev, J. Goree, V. Steinberg, and G. E. Morfill, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 61, 1890 (2000).

    Article  ADS  Google Scholar 

  14. N. Sato, G. Uchida, T. Kaneko, S. Shimizu, and S. Iizuka, Phys. Plasmas 8, 1786 (2001).

    Article  ADS  Google Scholar 

  15. P. K. Kaw, K. Nishikawa, and N. Sato, Phys. Plasmas 9, 387 (2002).

    Article  ADS  Google Scholar 

  16. F. M. H. Cheung, N. J. Prior, L. W. Mitchell, A. A. Samarian, and B. W. James, IEEE Trans. Plasma Sci. 31, 112 (2003).

    Article  ADS  Google Scholar 

  17. F. Cheung, A. Samarian, and B. James, New J. Phys. 5, 75 (2003).

    Article  ADS  Google Scholar 

  18. O. Ishihara, T. Kamimura, K. I. Hirose, and N. Sato, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 66, 046406 (2002).

    Article  ADS  Google Scholar 

  19. H. Kersten, R. Wiese, G. Thieme, M. Fröhlich, A. Kopitov, D. Bojic, F. Scholze, H. Neumann, M. Quaas, H. Wulff, and R. Hippler, New J. Phys. 5, 93 (2003).

    Article  ADS  Google Scholar 

  20. K. Matyash, M. Fröhlich, H. Kersten, G. Thieme, R. Schneider, M. Hannemann, and R. Hippler, J. Phys. D: Appl. Phys. 37, 2703 (2004).

    Article  ADS  Google Scholar 

  21. M. S. Barnes, J. H. Keller, J. C. Forster, J. A. O’Neill, and D. K. Coultas, Phys. Rev. Lett. 68, 313 (1992).

    Article  ADS  Google Scholar 

  22. S. A. Khrapak, A. V. Ivlev, G. E. Morfill, and H. M. Thomas, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 66(4), 046414-1 (2002).

    Google Scholar 

  23. V. G. Stepanov, V. F. Zakharchenko, and V. S. Bezel’, Sov. Phys. JETP 7, 353 (1958).

    Google Scholar 

  24. H. C. Early and W. G. Dow, Phys. Rev. 79, 186 (1950).

    Article  ADS  Google Scholar 

  25. A. F. Pal, A. O. Serov, A. N. Starostin, A. N. Ryabinkin, A. V. Filippov, and A. S. Ivanov, in Proceedings of the 18th European Conference on the Atomic and Molecular Physics of Ionized Gases, Lecce, Italy, July 12–16, 2006 (Lecce, 2006), p. 203.

  26. J. Carstensen, F. Greiner, L. J. Hou, H. Maurer, and A. Piel, Phys. Plasmas 16, 013702 (2009).

    Article  ADS  Google Scholar 

  27. A. V. Nedospasov, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 79, 036401 (2009).

    Article  ADS  Google Scholar 

  28. A. V. Nedospasov and N. V. Nenova, JETP 111(5), 877 (2010).

    Article  ADS  Google Scholar 

  29. A. V. Filippov, A. F. Pal, A. N. Ryabinkin, A. O. Serov, and A. N. Starostin, in Proceedings of the Second International Conference on the Physics of Dusty and Burning Plasmas, Odessa, Ukraine, August 26–30, 2007 (Odessa, 2007), p. 52.

  30. S. M. Rossnagel and H. R. Kaufman, J. Vac. Sci. Technol., A 5, 88 (1987).

    Article  ADS  Google Scholar 

  31. H. Kakati, A. R. Pal, H. Bailung, and J. Chutia, J. Phys. D: Appl. Phys. 40, 6865 (2007).

    Article  ADS  Google Scholar 

  32. L. G. H. Huxley and R. W. Crompton, The Diffusion and Drift of Electrons in Gases (Wiley, New York, 1974).

    Google Scholar 

  33. L. D Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Butterworth-Heinemann, Oxford, 1984).

    Google Scholar 

  34. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997).

    Google Scholar 

  35. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1976; Butterworth-Heinemann, Oxford, 1987).

    Google Scholar 

  36. A. A. Samarskii and A. V. Gulin, Numerical Methods (Nauka, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  37. H. W. Ellis, R. Y. Pai, E. W. McDaniel, E. A. Mason, and L. A. Viehland, At. Data. Nucl. Data 17, 177 (1976).

    Article  ADS  Google Scholar 

  38. T. Šimko, V. Martišovitš, J. Bretagne, and G. Gousset, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 56, 5908 (1997).

    Article  Google Scholar 

  39. E. Basurto, J. de Urquijo, I. Alvarez, and C. Cisneros, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 61, 3053 (2000).

    Article  Google Scholar 

  40. N. A. Dyatko, I. V. Kochetov, A. P. Napartovich, and M. D. Taran, Preprint No. IAE-3842/12 (Kurchatov Atomic Energy Institute, Moscow, 1983).

  41. K. Tachibana, Phys. Rev. A: At., Mol., Opt. Phys. 34, 1007 (1986).

    Article  ADS  Google Scholar 

  42. J. L. Pack, R. E. Voshall, A. V. Phelps, and L. E. Kline, J. Appl. Phys. 71, 5363 (1992).

    Article  ADS  Google Scholar 

  43. A. V. Phelps and L. C. Pitchford, Report No. 26, University of Colorado, Boulder, Colorado, 1985 (PHELPS database, http://www.lxcat.laplace.univ-tlse.fr, retrieved May 18, 2011).

  44. J. Dutton, J. Phys. Chem. Ref. Data 4, 577 (1975).

    Article  ADS  Google Scholar 

  45. Y. L. Li, S. Iizuka, and N. Sato, Plasma Sources Sci. Technol. 5, 241 (1996).

    Article  ADS  Google Scholar 

  46. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Nauka, Moscow, 1988; Butterworth-Heinemann, Oxford, 1989).

    Google Scholar 

  47. C. Zafiu, A. Melzer, and A. Piel, Phys. Plasmas 9, 4794 (2002).

    Article  ADS  Google Scholar 

  48. C. Zafiu, A. Melzer, and A. Piel, Phys. Plasmas 10, 1278 (2003).

    Article  ADS  Google Scholar 

  49. P. S. Epstein, Phys. Rev. 23, 710 (1924).

    Article  ADS  Google Scholar 

  50. M. Wolter, A. Melzer, O. Arp, M. Klindworth, and A. Piel, Phys. Plasmas 14, 123707 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Filippov.

Additional information

Original Russian Text © A.F. Pal, A.N. Ryabinkin, A.O. Serov, N.A. Dyatko, A.N. Starostin, A.V. Filippov, 2012, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 141, No. 3, pp. 608–620.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, A.F., Ryabinkin, A.N., Serov, A.O. et al. Orbital motion of dust particles in an rf magnetron discharge. Ion drag force or neutral atom wind force. J. Exp. Theor. Phys. 114, 535–546 (2012). https://doi.org/10.1134/S1063776112020276

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112020276

Keywords

Navigation