Skip to main content

Formation and application of correlated states in nonstationary systems at low energies of interacting particles


We consider prerequisites and investigate some optimal methods for the formation of a correlated coherent state of interacting particles in nonstationary systems. We study the influence of the degree of particle correlation on the probability of their passage through the Coulomb barrier for the realization of nuclear reactions at low energies. For such processes, the tunneling probability and, accordingly, the probability of nuclear reactions can grow by many orders of magnitude (in particular, the barrier transparency increases from D r = 0 ≈ 10−42 for an uncorrelated state to D |r| = 0.98 ≈ 0.1 at a correlation coefficient |r| ≈ 0.98). The formation of a correlated particle state is considered in detail for different types of monotonic decrease in the frequency of a harmonic oscillator with the particle located in its parabolic field. For the first time, we have considered the peculiarities and investigated the efficiency of the creation of a correlated state under a periodic action on a harmonic oscillator. This method is shown to lead to rapid formation of a strongly correlated particle state that provides an almost complete clearing of the potential barrier even for a narrow range of oscillator frequency variations.

This is a preview of subscription content, access via your institution.


  1. M. M. Basko, B. Yu. Sharkov, A. V. Zabrodin, S. Yu. Gus’kov, A. N. Didenko, V. S. Imshennik, D. G. Koshkarev, M. V. Maslennikov, S. A. Medin, S. L. Nedoseev, V. P. Smirnov, V. I. Subbotin, L. P. Feoktistov, V. V. Kharitonov, and M. D. Churazov, Nuclear Fusion with Inertial Confinement (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  2. J. P. Freidberg, Plasma Physics and Fusion Energy (Cambridge University Press, Cambridge, 2008).

    Google Scholar 

  3. V. I. Krauz, Yu. V. Martynenko, N. Yu. Svechnikov, V. P. Smirnov, V. G. Stankevich, and L. N. Khimchenko, Phys.—Usp. 53(10), 1015 (2010).

    ADS  Article  Google Scholar 

  4. D. Arnett, Supernovae and Nucleosynthesis (Princeton University Press, New York, 1996).

    Google Scholar 

  5. A. G. V. Cameron, Astrophys. J. 121, 144 (1955).

    ADS  Article  Google Scholar 

  6. V. I. Vysotskii and S. V. Adamenko, Tech. Phys. 55(5), 613 (2010).

    Article  Google Scholar 

  7. E. Schrödinger, Ber. Kgl. Akad. Wiss. Berlin 24, 296 (1930).

    Google Scholar 

  8. H. P. Robertson, Phys. Rev. A: At., Mol., Opt. Phys. 35, 667 (1930).

    Google Scholar 

  9. V. V. Dodonov and V. I. Man’ko, Tr. Fiz. Inst. im. P. N. Lebedeva, Akad. Nauk SSSR 183, 71 (1987).

    MathSciNet  Google Scholar 

  10. V. V. Dodonov, A. V. Klimov, and V. I. Man’ko, Tr. Fiz. Inst. im. P. N. Lebedeva, Akad. Nauk SSSR 200, 56 (1991).

    MathSciNet  Google Scholar 

  11. Controlled Nucleosynthesis: Breakthroughs in Experiment and Theory, Ed. by S. V. Adamenko, F. Selleri, and A. van der Merwe (Springer, Berlin, 2007).

    Google Scholar 

  12. V. V. Dodonov and A. V. Dodonov, J. Russ. Laser Res. 26, 445 (2005); J. Russ. Laser Res. 27, 379 (2006).

    Article  Google Scholar 

  13. V. V. Dodonov and A. V. Dodonov, J. Phys. A: Math. Gen. 39, 6271 (2006).

    MathSciNet  ADS  MATH  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. I. Vysotskii.

Additional information

Original Russian Text © V.I. Vysotskii, M.V. Vysotskyy, S.V. Adamenko, 2012, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 141, No. 2, pp. 276–287.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vysotskii, V.I., Vysotskyy, M.V. & Adamenko, S.V. Formation and application of correlated states in nonstationary systems at low energies of interacting particles. J. Exp. Theor. Phys. 114, 243–252 (2012).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • Correlate State
  • Coulomb Barrier
  • Superposition State
  • Tunneling Probability
  • Nonstationary System