Skip to main content
Log in

Atomic dynamics of tin nanoparticles embedded into porous glass

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The method of resonant nuclear inelastic absorption of synchrotron radiation has been used to study the phonon spectrum for tin nanoparticles (with a natural isotope mixture) embedded into a porous glassy (silica) matrix with an average pore diameter of 7 nm in comparison to the analogous spectrum of bulk tin enriched with 119Sn isotope. Differences between the spectra have been observed, which are related to both the dimensional effects and specific structural features of the porous glass-tin nanocomposite. Peculiarities in the dynamics of tin atoms embedded into nanopores of glass are interpreted in terms of a qualitative model of the nanocomposite structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. D. Morokhov, V. I. Petinov, L. I. Trusov, and V. F. Petrunin, Sov. Phys.—Usp. 24(4), 295 (1981).

    Article  ADS  Google Scholar 

  2. E. L. Nagaev, Sov. Phys.—Usp. 35(9), 747 (1992).

    Article  ADS  Google Scholar 

  3. P. Levitz, G. Ehret, S. K. Sinha, and J. M. Drake, J. Chem. Phys. 95, 6151 (1991).

    Article  ADS  Google Scholar 

  4. B. Fultz, C. C. Ahn, E. E. Alp, W. Sturhahn, and T. S. Toellner, Phys. Rev. Lett. 79, 937 (1997).

    Article  ADS  Google Scholar 

  5. S. V. Pan’kova, V. V. Poborchii, and V. G. Solov’ev, J. Phys: Condens. Matter 8, L203 (1996).

    Article  Google Scholar 

  6. A. V. Fokin, Yu. A. Kumzerov, N. M. Okuneva, A. A. Naberezhnov, S. B. Vakhrushev, I. V. Golosovsky, and A. I. Kurbakov, Phys. Rev. Lett. 89, 175503 (2002).

    Article  ADS  Google Scholar 

  7. L. Pasquini, A. Barla, A. I. Chumakov, O. Leupold, R. Rüffer, A. Deriu, and E. Bonetti, Phys. Rev. B: Condens. Matter 66, 73410 (2002).

    Article  ADS  Google Scholar 

  8. I. V. Golosovsky, R. G. Delaplane, A. A. Naberezhnov, and Yu. A. Kumzerov, Phys. Rev. B: Condens. Matter 69, 132301 (2004).

    Article  ADS  Google Scholar 

  9. J. M. Rowe, Phys. Rev. 163, 547 (1967).

    Article  ADS  Google Scholar 

  10. B. A. Kotov, N. M. Okuneva, and E. L. Plachenova, Sov. Phys. Solid State 10(2), 402 (1968).

    Google Scholar 

  11. A. S. Ivanov, N. L. Mitrofanov, A. Yu. Rumyantsev, M. N. Khlopkin, and N. A. Chernoplekov, Sov. Phys. Solid State 29(6), 977 (1987).

    Google Scholar 

  12. A. I. Chumakov, A. Barla, R. Rüffer, H. F. Grünsteudel, and H. Grünsteudel, Phys. Rev. B: Condens. Matter 58, 254 (1998).

    Article  ADS  Google Scholar 

  13. A. Barla, R. Rüffer, A. I. Chumakov, and J. Metge, Phys. Rev. B: Condens. Matter 61, R14881 (2000).

    Article  ADS  Google Scholar 

  14. E. G. Brovman and Yu. Kagan, Sov. Phys. Solid State 8(5), 1120 (1966).

    Google Scholar 

  15. P. P. Parshin, M. G. Zemlyanov, G. Kh. Panova, A. A. Shikov, A. A. Naberezhnov, Yu. A. Kumzerov, I. V. Golosovsky, and A. S. Ivanov, JETP 111(6), 996 (2010).

    Article  ADS  Google Scholar 

  16. M. Seto, Y. Yoda, S. Kikuta, X. W. Zhang, and M. Ando, Phys. Rev. Lett. 74, 3828 (1995).

    Article  ADS  Google Scholar 

  17. W. Sturhahn, T. S. Toellner, E. E. Alp, X. Zhang, M. Ando, Y. Yoda, S. Kikuta, M. Seto, C. W. Kimball, and B. Dabrowski, Phys. Rev. Lett. 74, 3832 (1995).

    Article  ADS  Google Scholar 

  18. A. I. Chumakov, R. Rüffer, H. Grünsteudel, H. F. Grünsteudel, G. Grübel, J. Metge, O. Leupold, and H. A. Goodwin, Europhys. Lett. 30, 427 (1995).

    Article  ADS  Google Scholar 

  19. A. I. Chumakov, A. Q. R. Baron, R. Rüffer, H. Grünsteudel, H. F. Grünsteudel, and A. Meyer, Phys. Rev. Lett. 76, 4258 (1996).

    Article  ADS  Google Scholar 

  20. A. I. Chumakov, R. Rüffer, A. Q. R. Baron, H. Grünsteudel, and H. F. Grünsteudel, Phys. Rev. B: Condens. Matter 54, R9598 (1996).

    Article  ADS  Google Scholar 

  21. A. Chumakov and R. Rüffer, Hyperfine Interact. 113, 59 (1998).

    Article  ADS  Google Scholar 

  22. A. I. Chumakov, Phys. Status Solidi B 215, 165 (1999).

    Article  ADS  Google Scholar 

  23. A. I. Chumakov and W. Sturhahn, Hyperfine Interact. 123/124, 781 (1999).

    Article  Google Scholar 

  24. A. I. Chumakov, A. Barla, R. Rüffer, H. F. Grünsteudel, and H. Grünsteudel, Phys. Rev. B: Condens. Matter 58, 254 (1998).

    Article  ADS  Google Scholar 

  25. J. A. Rayne and B. S. Chandrasekhar, Phys. Rev. 120, 1658 (1960).

    Article  ADS  Google Scholar 

  26. Powder Diffraction: Theory and Practice, Ed. by R. E. Dinnebier and S. J. L. Billinge (RSC Publishing, Cambridge, 2008).

    Google Scholar 

  27. R. Rüffer and A. I. Chumakov, Hyperfine Interact. 97/98, 589 (1996).

    Article  ADS  Google Scholar 

  28. I. Sergueev, H.-C. Wille, R. P. Hermann, et al., submitted for publication in J. Synchrotron Radiat. (2011).

  29. Y. V. Shvyd’ko and E. Gerdau, Hyperfine Interact. 123, 741 (1999).

    Article  Google Scholar 

  30. P. Van der Linden, H. Wille, and Y. V. Shvyd’ko, AIP Conf. Proc. 879, 915 (2007).

    Article  ADS  Google Scholar 

  31. G. K. White and R. B. Roberts, High Temp.—High Pressures 15, 321 (1983).

    Google Scholar 

  32. A. Q. R. Baron, Nucl. Instrum. Methods Phys. Res., Sect. A 352, 665 (1995).

    Article  ADS  Google Scholar 

  33. Y. J. Lihkin, Phys. Rev. B: Condens. Matter 52, 10073 (1995).

    Article  ADS  Google Scholar 

  34. V. G. Kohn and A. I. Chumakov, Hyperfine Interact. 125, 205 (2000).

    Article  Google Scholar 

  35. A. Kara and T. S. Rahman, Phys. Rev. Lett. 81, 1453 (1998).

    Article  ADS  Google Scholar 

  36. P. M. Derlet, R. Meyer, L. J. Lewis, U. Stuhr, and H. Van Swygenhoven, Phys. Rev. Lett. 87, 205501 (2001).

    Article  ADS  Google Scholar 

  37. P. M. Derlet and H. Van Swygenhoven, Phys. Rev. Lett. 92, 035505 (2004).

    Article  ADS  Google Scholar 

  38. S. Stankov, Y. Z. Yue, M. Miglierini, B. Sepiol, I. Sergueev, A. I. Chumakov, L. Hu, P. Svec, and R. Rüffer, Phys. Rev. Lett. 100, 235503 (2008).

    Article  ADS  Google Scholar 

  39. S. Stankov, M. Miglierini, A. I. Chumakov, I. Sergueev, Y. Z. Yue, B. Sepiol, P. Svec, L. Hu, and R. Rüffer, Phys. Rev. B: Condens. Matter 82, 144301 (2010).

    Article  ADS  Google Scholar 

  40. S. N. Taraskin and S. R. Elliott, Phys. Rev. B: Condens. Matter 55, 117 (1997).

    Article  ADS  Google Scholar 

  41. M. G. Zemlyanov, V. K. Malinovskii, V. N. Novikov, P. P. Parshin, and A. P. Sokolov, JETP Lett. 49(9), 602 (1989).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Zemlyanov.

Additional information

Original Russian Text © P.P. Parshin, M.G. Zemlyanov, G.Kh. Panova, A.A. Shikov, Yu.A. Kumzerov, A.A. Naberezhnov, I. Sergueev, W. Crichton, A.I. Chumakov, R. Rüffer, 2012, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 141, No. 3, pp. 502–514.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parshin, P.P., Zemlyanov, M.G., Panova, G.K. et al. Atomic dynamics of tin nanoparticles embedded into porous glass. J. Exp. Theor. Phys. 114, 440–450 (2012). https://doi.org/10.1134/S1063776112010141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112010141

Keywords

Navigation