Skip to main content
Log in

The multiple quantum NMR dynamics in systems of equivalent spins with a dipolar ordered initial state

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The multiple quantum (MQ) NMR dynamics in the system of equivalent spins with the dipolar ordered initial state is considered. The high symmetry of the Hamiltonian responsible for the MQ NMR dynamics (the MQ Hamiltonian) is used to develop analytic and numerical methods for the investigation of the MQ NMR dynamics in systems consisting of hundreds of spins from the “first principles.” We obtain the dependence of the intensities of the MQ NMR coherences on their orders (profiles of the MQ NMR coherences) for systems of 200–600 spins. It is shown that these profiles may be well approximated by exponential distribution functions. We also compare the MQ NMR dynamics in the systems of equivalent spins having two different initial states, the dipolar ordered state and the thermal equilibrium state in a strong external magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Baum, M. Munovitz, A. N. Garroway, and A. Pines, J. Chem. Phys. 83, 2015 (1985).

    Article  ADS  Google Scholar 

  2. J. Baum, K. K. Gleason, A. Pines, A. N. Garroway, and J. A. Reimer, Phys. Rev. Lett. 56, 1377 (1986).

    Article  ADS  Google Scholar 

  3. C. E. Hughes, Prog. Nucl. Magn. Reson. Spectrosc. 45, 301 (2004).

    Article  Google Scholar 

  4. W. S. Warren, D. P. Weitekamp, and A. Pines, J. Chem. Phys. 73, 2084 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  5. G. B. Furman and S. D. Goren, J. Phys.: Condens. Matter 17, 4501 (2005).

    Article  ADS  Google Scholar 

  6. M. Goldman, Spin Temperature and Nuclear Magnetic Resonance in Solids (Clarendon, Oxford, 1970).

    Google Scholar 

  7. C. P. Slichter and W. C. Holton, Phys. Rev. 122, 1701 (1961).

    Article  ADS  Google Scholar 

  8. J. Jeener and P. Broekaert, Phys. Rev. 157, 232 (1967).

    Article  ADS  Google Scholar 

  9. S. I. Doronin, E. B. Fel’dman, E. I. Kuznetsova, G. B. Furman, and S. D. Goren, Phys. Rev. B: Condens. Matter 76, 144405 (2007).

    Article  ADS  Google Scholar 

  10. S. I. Doronin, E. B. Fel’dman, E. I. Kuznetsova, G. B. Furman, and S. D. Goren, JETP Lett. 86(1), 24 (2007).

    Article  ADS  Google Scholar 

  11. V. V. Dobrovitski, H. A. De Raedt, M. I. Katsnelson, and B. N. Harmon, Phys. Rev. Lett. 90, 210401 (2003).

    Article  ADS  Google Scholar 

  12. W. X. Zhang, P. Cappellaro, N. Amtler, B. Pepper, D. G. Cory, V. V. Dobrovitski, C. Ramanathan, and L. Viola, Phys. Rev. A: At., Mol., Opt. Phys. 80, 052323 (2009).

    Article  ADS  Google Scholar 

  13. J. Baugh, A. Kleinhammes, D. Han, Q. Wang, and Y. Wu, Science (Washington) 294, 1505 (2001).

    Article  ADS  Google Scholar 

  14. E. B. Fel’dman and M. G. Rudavets, JETP 98(2), 207 (2004).

    Article  ADS  Google Scholar 

  15. S. I. Doronin, A. V. Fedorova, E. B. Fel’dman, and A. I. Zenchuk, J. Chem. Phys. 131, 104109 (2009).

    Article  ADS  Google Scholar 

  16. S. I. Doronin, A. V. Fedorova, E. B. Fel’dman, and A. I. Zenchuk, Phys. Chem. Chem. Phys. 12, 13273 (2010).

    Article  Google Scholar 

  17. S. I. Doronin, E. B. Fel’dman, and A. I. Zenchuk, J. Chem. Phys. 134, 034102 (2011).

    Article  ADS  Google Scholar 

  18. F. S. Dzheparov, Preprint No. 7-10, ITEF (Alikhanov Institute for Experimental and Theoretical Physics, Moscow, 2010).

  19. E. B. Fel’dman and S. Lacelle, J. Chem. Phys. 107, 7067 (1997).

    Article  ADS  Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1974; Pergamon, New York, 1977).

    Google Scholar 

  21. S. I. Doronin, E. B. Fel’dman, I. Ya. Guinzbourg, and I. I. Maximov, Chem. Phys. Lett. 341, 144 (2001).

    Article  ADS  Google Scholar 

  22. S. Lacelle, S.-J. Hwang, and B. C. Gerstein, J. Chem. Phys. 99, 8407 (1993).

    Article  ADS  Google Scholar 

  23. D. A. Lathrop, E. S. Handy, and K. K. Gleason, J. Magn. Reson. Ser., Ser. A 111, 161 (1994).

    Article  Google Scholar 

  24. V. E. Zobov and A. A. Lundin, JETP 103(6), 904 (2006).

    Article  ADS  Google Scholar 

  25. V. E. Zobov and A. A. Lundin, JETP 112(3), 451 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Zenchuk.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doronin, S.I., Fel’dman, E.B. & Zenchuk, A.I. The multiple quantum NMR dynamics in systems of equivalent spins with a dipolar ordered initial state. J. Exp. Theor. Phys. 113, 495–501 (2011). https://doi.org/10.1134/S1063776111130036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111130036

Keywords

Navigation