Skip to main content
Log in

Ground state microstructure of a ferrofluid thin layer

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Using a fine weave of theoretical analysis and computer simulations, we found various aggregates of magnetic single-domain nanoparticles, which can form in a quasi-two-dimensional (q2D) ferrofluid layer at low temperatures. Our theoretical investigation allowed us to obtain exact expressions and their asymptotes for the energies of each configuration. Thus, for ferrofluid q2D layers it proved possible to identify the ground states as a function of the particle number, size, and other system parameters. Our suggested approach can be used for the investigation of ground state structures in systems with more complex interparticle interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Anton, I. de Sabata, and L. Vékás, J. Magn. Magn. Mater. 85, 219 (1990).

    Article  ADS  Google Scholar 

  2. K. Raj, B. Moskowitz, and R. Casciari, J. Magn. Magn. Mater. 149, 174 (1995).

    Article  ADS  Google Scholar 

  3. C. Alexiou, R. Jurgons, R. Schmid, C. Bergemann, J. Henke, W. Erhard, E. Huenges, and F. Parak, J. Drug Targeting 11, 139 (2003).

    Article  Google Scholar 

  4. I. Hilger, W. Andreist, and W. A. Kaiser, in Inorganic Materials: Recent Advances, Ed. by D. Bahadur, S. Vitta, and O. Prakash (Narosa, New Delhi, 2004).

    Google Scholar 

  5. A. Lubbe, C. Alexiou, and C. Bergemann, J. Surg. Res. 95, 200 (2001).

    Article  Google Scholar 

  6. A. Y. Zubarev and L. Y. Iskakova, JETP 80(5), 857 (1995).

    ADS  Google Scholar 

  7. M. A. Osipov, P. I. C. Teixeira, and M. M. Telo da Gama, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 54, 2597 (1996).

    Article  Google Scholar 

  8. A. O. Ivanov and S. S. Kantorovich, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 70, 021401 (2004).

    Article  ADS  Google Scholar 

  9. A. O. Ivanov, S. S. Kantorovich, V. S. Mendelev, V. S. Mendelev, and E. S. Pyanzina, J. Magn. Magn. Mater. 300, e206 (2006).

    Article  ADS  Google Scholar 

  10. S. Kantorovich, J. J. Cerda, and C. Holm, Phys. Chem. Chem. Phys. 10, 1883 (2008).

    Article  Google Scholar 

  11. E. Elfimova and A. Ivanov, JETP 111(1), 146 (2010).

    Article  ADS  Google Scholar 

  12. J. J. Cerdá, E. Elfimova, V. Ballenegger, E. Krutikova, A. Ivanov, and C. Holm, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 81, 011501 (2010).

    Article  ADS  Google Scholar 

  13. P. Langevin, J. Phys. (Paris) 4, 678 (1905).

    Google Scholar 

  14. P. Langevin, Ann. Chim. Phys. 5, 70 (1905).

    MATH  Google Scholar 

  15. M. I. Shliomis, Sov. Phys.—Usp. 17(2), 153 (1974).

    Article  ADS  Google Scholar 

  16. A. Cebers, Magnetohydrodynamics 18, 137 (1982).

    Google Scholar 

  17. A. O. Ivanov and O. B. Kuznetsova, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 64, 041405 (2001).

    Article  ADS  Google Scholar 

  18. S. Odenbach and H. Gilly, J. Magn. Magn. Mater. 152, 123 (1996).

    Article  ADS  Google Scholar 

  19. S. Odenbach and S. Thurm, Ferrofluids (Springer, Berlin, 2002), p. 185.

    MATH  Google Scholar 

  20. S. Odenbach, Magnetoviscous Effects in Ferrofluids (Springer, Berlin, 2002).

    MATH  Google Scholar 

  21. Y. N. Skibin, V. V. Chekanov, and Y. L. Raizer, JETP 45(3), 496 (1977).

    ADS  Google Scholar 

  22. P. C. Scholten, IEEE Trans. Magn. 16, 221 (1980).

    Article  ADS  Google Scholar 

  23. S. Taketomi, Jpn. J. Appl. Phys. 22, 1137 (1983).

    Article  ADS  Google Scholar 

  24. E. Hasmoney, J. Depeyrot, M. H. Sousa, F. A. Tourinho, J.-C. Bacri, R. Perzynski, Yu. L. Raikher, and I. Rosenman, J. Appl. Phys. 81, 6628 (2000).

    Article  ADS  Google Scholar 

  25. V. Buzmakov and A. Pshenichnikov, J. Colloid Interface Sci. 182, 63 (1996).

    Article  Google Scholar 

  26. G. Mériguet, E. Dubois, A. Bourdon, G. Demouchy, V. Dupuis, and R. Perzynski, J. Magn. Magn. Mater. 289, 39 (2005).

    Article  ADS  Google Scholar 

  27. L. Pop and S. Odenbach, J. Phys.: Condens. Matter 18, 2758 (2006).

    Article  Google Scholar 

  28. D. Bica, L. Vékás, M. Avdeev, O. Marinica, V. Socoliuc, M. Balasoiu, and V. M. Garamus, J. Magn. Magn. Mater. 311, 17 (2007).

    Article  ADS  Google Scholar 

  29. A. Wiedenmann, U. Keiderling, M. Meissner, D. Wallacher, R. Gähler, R. P. May, S. Prévost, M. Klokkenburg, B. H. Erné, and J. Kohlbrecher, Phys. Rev. B: Condens. Matter 77, 184417 (2008).

    Article  ADS  Google Scholar 

  30. M. Klokkenburg, R. Dullens, W. Kegel, B. H. Erné, and A. P. Philipse, Phys. Rev. Lett. 96, 037203 (2006).

    Article  ADS  Google Scholar 

  31. J. J. Cerdà, S. Kantorovich, and C. Holm, J. Phys.: Condens. Matter 20, 204125 (2008).

    Article  ADS  Google Scholar 

  32. A. V. Lebedev and S. N. Lysenko, J. Magn. Magn. Mater. 323, 1198 (2011).

    Article  ADS  Google Scholar 

  33. T. Prokopieva, V. Danilov, S. Kantorovich, and C. Holm, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 80, 031404 (2009).

    Article  ADS  Google Scholar 

  34. P. Jund, S. G. Kim, D. Tomanek, and J. Hetherington, Phys. Rev. Lett. 74, 3049 (1995).

    Article  ADS  Google Scholar 

  35. D. Tomanek, S. G. Kim, P. Jund, P. Borrmann, H. Stamerjohanns and E. R. Hilf, Z. Phys. D: At., Mol. Clusters 40, 539 (1997).

    Article  Google Scholar 

  36. H. Morimoto and T. Maekawa, J. Phys. A: Math. Gen. 33, 247 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. H. Morimoto, T. Maekawa, and Y. Matsumoto, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 68, 061505 (2003).

    Article  Google Scholar 

  38. F. Kun, W. Wen, K. F. Pál, and K. N. Tu, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 64, 061503 (2001).

    Article  Google Scholar 

  39. C. Xu, Y. Ma, P. Hui, and F-Q. Tong, Chin. Phys. Lett. 22, 485 (2005).

    Article  ADS  Google Scholar 

  40. Yu. A. Koksharov, G. B. Khomutov, E. S. Soldatov, D. Suyatin, I. Maximov, L. Montelius, and P. Carlberg, Thin Solid Films 515, 731 (2006).

    Article  ADS  Google Scholar 

  41. J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971).

    Article  ADS  Google Scholar 

  42. J. J. Weis and D. Levesque, Phys. Rev. Lett. 71, 2729 (1993).

    Article  ADS  Google Scholar 

  43. Z. Wang and C. Holm, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 68, 041401 (2003).

    Article  ADS  Google Scholar 

  44. J. P. Huang and C. Holm, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 70, 061404 (2004).

    Article  Google Scholar 

  45. T. Kristóf and I. Szalai, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 68, 041109 (2003).

    Article  ADS  Google Scholar 

  46. C. Holm and J.-J. Weis, Curr. Opin. Colloid Interface Sci. 10, 133 (2005).

    Article  Google Scholar 

  47. C. Holm, A. Ivanov, S. Kantorovich, E. Pyanzina, and E. Reznikov, J. Phys.: Condens. Matter 18, S2737 (2006).

    Article  ADS  Google Scholar 

  48. J. Jordanovic and S. H. L. Klapp, Phys. Rev. Lett. 101, 038302 (2008).

    Article  ADS  Google Scholar 

  49. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).

    MATH  Google Scholar 

  50. P. J. Camp and G. N. Patey, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 62, 5403 (2000).

    Article  Google Scholar 

  51. G. Ganzenmueller and P. J. Camp, J. Chem. Phys. 126, 191104 (2007).

    Article  ADS  Google Scholar 

  52. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

    Article  ADS  Google Scholar 

  53. S. Kantorovich, J. Magn. Magn. Mater. 258, 471 (2003).

    Article  ADS  Google Scholar 

  54. A. Ivanov, Z. Wang, and C. Holm, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 69, 031206 (2004).

    Article  ADS  Google Scholar 

  55. A. O. Ivanov, J. Magn. Magn. Mater. 154, 66 (1996).

    Article  ADS  Google Scholar 

  56. B. Y. Kim, I. B. Shim, O. L. A. Monti, and J. Pyun, Chem. Commun. (Cambridge) 47, 890 (2011).

    Article  Google Scholar 

  57. J. Doyle, B. Friedrich, R. Krems, and R. Masnou-Seeuws, Eur. Phys. J. D 31, 149 (2004).

    Article  ADS  Google Scholar 

  58. J. Sage, S. Sainis, T. Bergeman, and D. DeMille, Phys. Rev. Lett. 94, 203001 (2005).

    Article  ADS  Google Scholar 

  59. L. Pollet, J. D. Picon, H. P. Büchler, and M. Troyer, Phys. Rev. Lett. 104, 125302 (2010).

    Article  ADS  Google Scholar 

  60. L. Bonnes, H. Büchler, and S. Wessel, New J. Phys. 12, 053027 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Kantorovich.

Additional information

Original Russian Text © T.A. Prokopieva, V.A. Danilov, S.S. Kantorovich, 2011, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 140, No. 3, pp. 499–515.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prokopieva, T.A., Danilov, V.A. & Kantorovich, S.S. Ground state microstructure of a ferrofluid thin layer. J. Exp. Theor. Phys. 113, 435–449 (2011). https://doi.org/10.1134/S1063776111100062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111100062

Keywords

Navigation