Skip to main content
Log in

Formation of conical emission of supercontinuum during filamentation of femtosecond laser radiation in fused silica

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The formation of conical emission of supercontinuum during filamentation of femtosecond laser pulses with central wavelengths in a wide range is studied experimentally, numerically, and analytically. The frequency-angular intensity distribution of the spectral components of conical emission is determined by the interference of supercontinuum emission in a filament of a femtosecond laser pulse. The interference of supercontinuum emission has a general character, exists at different regimes of group velocity dispersion, gives rise to the fine spectral structure after the pulse splitting into subpulses and the formation of a distributed supercontinuum source in an extended filament, and causes the decomposition of the continuous spectrum of conical emission into many high-contrast maxima after pulse refocusing in the filament. In spectroscopic studies with a tunable femtosecond radiation source based on a TOPAS parametric amplifier, we used an original scheme with a wedge fused silica sample. Numerical simulations have been performed using a system of equations of nonlinear-optical interaction of laser radiation under conditions of diffraction, wave nonstationarity, and material dispersion in fused silica. The analytic study is based on the interference model of formation of conical emission by supercontinuum sources moving in a filament.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).

    Article  ADS  Google Scholar 

  2. V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, Quantum Electronics 39, 205 (2009).

    Article  ADS  Google Scholar 

  3. R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev. Lett. 13, 479 (1964)

    Article  ADS  Google Scholar 

  4. J. Kasparian and J.-P. Wolf, Opt. Express 16, 466 (2008).

    Article  ADS  Google Scholar 

  5. S. L. Chin, H. L. Xu, Q. Luo, F. Théberge, W. Liu, J. F. Daigle, Y. Kamali, P. T. Simard, J. Bernhardt, S. A. Hosseini, M. Sharifi, G. Méjean, A. Azarm, C. Marceau, O. Kosareva, V. P. Kandidov, N. Aközbek, A. Becker, G. Roy, P. Mathieu, J. R. Simard, M. Chateauneuf, and J. Dubois, Appl. Phys. B: Lasers Opt. 95, 1 (2009).

    Article  ADS  Google Scholar 

  6. N. G. Bondarenko, I. V. Eremina, and V. I. Talanov, JETP Lett. 12(3), 85 (1970).

    ADS  Google Scholar 

  7. R. R. Alfano and S. L. Shapiro, Phys. Rev. Lett. 24, 592 (1970).

    Article  ADS  Google Scholar 

  8. F. Shimizu, Phys. Rev. Lett. 19, 1097 (1967).

    Article  ADS  Google Scholar 

  9. R. R. Alfano, L. L. Hope, and S. L. Shapiro, Phys. Rev. A: At., Mol., Opt. Phys. 6, 433 (1972).

    Article  ADS  Google Scholar 

  10. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, Opt. Lett. 8, 1 (1983).

    Article  ADS  Google Scholar 

  11. W. Liu, S. Petit, A. Becker, N. Aközbek, C. M. Bowden, and S. L. Chin, Opt. Commun. 202, 189 (2002).

    Article  ADS  Google Scholar 

  12. A. Brodeur and S. L. Chin, Phys. Rev. Lett. 80, 4406 (1998).

    Article  ADS  Google Scholar 

  13. C. Nagura, A. Suda, H. Kawano, M. Obara, and K. Midorikawa, Appl. Opt. 41, 3735 (2002).

    Article  ADS  Google Scholar 

  14. I. Golub, Opt. Lett. 15, 305 (1990).

    Article  ADS  Google Scholar 

  15. Q. Xing, K. M. Yoo, and R. R. Alfano, Appl. Opt. 32, 2087 (1993).

    Article  ADS  Google Scholar 

  16. J. A. Dharmadhikari, F. A. Rajgara, and D. Mathur, Appl. Phys. B: Lasers Opt. 82, 575 (2006).

    Article  ADS  Google Scholar 

  17. D. Faccio, P. D. Trapani, St. Minardi, A. Bramati, F. Bragheri, C. Liberale, V. Degiorgio, A. Dubietis, and A. Matijosius, J. Opt. Soc. Am. B 22, 862 (2005).

    Article  ADS  Google Scholar 

  18. D. Faccio, A. Couairon, and P. D. Trapani, Conical Waves, Filaments, and Nonlinear Filamentation Optics (Aracne, Rome, 2007).

  19. G. G. Luther, A. C. Newell, J. V. Moloney, and E. M. Wright, Opt. Lett. 19, 789 (1994).

    Article  ADS  Google Scholar 

  20. E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, Opt. Lett. 21, 62 (1996).

    Article  ADS  Google Scholar 

  21. V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, Appl. Phys. B: Lasers Opt. 77, 149 (2003).

    Article  ADS  Google Scholar 

  22. M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, Phys. Rev. Lett. 91, 043905 (2003).

    Article  ADS  Google Scholar 

  23. M. Kolesik, E. M. Wright, and J. V. Moloney, Opt. Express 13, 10729 (2005).

    Article  ADS  Google Scholar 

  24. C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, Phys. Rev. Lett. 90, 170406 (2003).

    Article  ADS  Google Scholar 

  25. A. E. Dormidonov, V. P. Kandidov, V. O. Kompanets, and S. V. Chekalin, Quantum Electronics 39, 653 (2009).

    Article  ADS  Google Scholar 

  26. E. O. Smetanina, A. E. Dormidonov, and V. O. Kompanets, J. Opt. Technol. 77, 463 (2010).

    Article  Google Scholar 

  27. A. E. Dormidonov and V. P. Kandidov, Laser Phys. 19, 1993 (2009).

    Article  ADS  Google Scholar 

  28. A. E. Dormidonov, V. P. Kandidov, V. O. Kompanets, and S. V. Chekalin, JETP Lett. 91(8), 373 (2010).

    Article  ADS  Google Scholar 

  29. T. Brabec and F. Krausz, Phys. Rev. Lett. 78, 3282 (1997).

    Article  ADS  Google Scholar 

  30. G. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, California, United States, 1995; Mir, Moscow, 1996).

    Google Scholar 

  31. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (Nauka, Moscow, 1988; American Institute of Physics, New York, 1991).

    Google Scholar 

  32. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, J. Opt. Soc. Am. B 6, 1159 (1989).

    Article  ADS  Google Scholar 

  33. T. Olivier, F. Billard, and H. Akhouayri, Opt. Express 12, 1377 (2004).

    Article  ADS  Google Scholar 

  34. Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991; Nauka, Moscow, 1992).

    Book  Google Scholar 

  35. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1964).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Kandidov.

Additional information

Original Russian Text © V.P. Kandidov, E.O. Smetanina, A.E. Dormidonov, V.O. Kompanets, S.V. Chekalin, 2011, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 140, No. 3, pp. 484–496.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandidov, V.P., Smetanina, E.O., Dormidonov, A.E. et al. Formation of conical emission of supercontinuum during filamentation of femtosecond laser radiation in fused silica. J. Exp. Theor. Phys. 113, 422–432 (2011). https://doi.org/10.1134/S1063776111080073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111080073

Keywords

Navigation