Skip to main content
Log in

Spontaneous emission of the non-Wiener type

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The spontaneous emission of a quantum particle and superradiation of an ensemble of identical quantum particles in a vacuum electromagnetic field with zero photon density are examined under the conditions of significant Stark particle and field interaction. New fundamental effects are established: suppression of spontaneous emission by the Stark interaction, an additional “decay” shift in energy of the decaying level as a consequence of Stark interaction unrelated to the Lamb and Stark level shifts, excitation conservation phenomena in a sufficiently dense ensemble of identical particles and suppression of superradiaton in the decay of an ensemble of excited quantum particles of a certain density. The main equations describing the emission processes under conditions of significant Stark interaction are obtained in the effective Hamiltonian representation of quantum stochastic differential equations. It is proved that the Stark interaction between a single quantum particle and a broadband electromagnetic field is represented as a quantum Poisson process and the stochastic differential equations are of the non-Wiener (generalized Langevin) type. From the examined case of spontaneous emission of a quantum particle, the main rules are formulated for studying open systems in the effective Hamiltonian representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. M. Dirac, Proc. R. Soc. London, Ser. A 114, 710 (1927).

    Article  ADS  MATH  Google Scholar 

  2. V. Weisskopf and E. Wigner, Z. Phys.: Condens. Matter 63, 54 (1930); V. Weisskopf and E. Wigner, Z. Phys.: Condens. Matter 65, 18 (1931).

    Google Scholar 

  3. E. B. Davies, Quantum Theory of Open Systems (Academic, London, 1976).

    MATH  Google Scholar 

  4. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Willey, New York, 1975).

    Google Scholar 

  5. V. S. Butylkin, A. E. Kaplan, Yu. G. Khronopulo, and E. I. Yakubovich, Resonant Nonlinear Interactions of Light with Matter (Nauka, Moscow, 1977; Springer, Berlin, 1989).

    Google Scholar 

  6. F. Bloch, Phys. Rev. 70, 460 (1946).

    Article  ADS  Google Scholar 

  7. Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics (Wiley, New York, 1999).

    MATH  Google Scholar 

  8. D. Loss and D. P. DiVincenzo, Phys. Rev. A: At., Mol., Opt. Phys. 57, 120 (1998).

    Article  ADS  Google Scholar 

  9. A. M. Basharov, JETP 110(6), 951 (2010).

    Article  ADS  Google Scholar 

  10. M. G. Benedict, A. M. Ermolaev, V. A. Malyshev, I. V. Sokolov, and E. D. Trifonov, Super-Radiance: Multiatomic Coherent Emission (Institute of Physics, Bristol and Philadelphia, 1996).

  11. H. Carmichael, An Open Systems Approach to Quantum Optics (Springer, Berlin, 1993).

    MATH  Google Scholar 

  12. A. Barchielli, Phys. Rev. A: At., Mol., Opt. Phys. 34, 1642 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  13. A. Barchielli and V. P. Belavkin, J. Phys. A: Math. Gen. 24, 1495 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  14. K. Blum, Density Matrix Theory and Applications (Plenum, New York, 1981; Mir, Moscow, 1983).

    MATH  Google Scholar 

  15. H.-P. Breuer and F. Petruccione, Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002).

    MATH  Google Scholar 

  16. V. E. Tarasov, Quantum Mechanics of Non-Hamiltonian and Dissipative Systems (Elsevier, Amsterdam, 2008).

    MATH  Google Scholar 

  17. R. L. Hudson and K. R. Parthasarathy, Commun. Math. Phys. 93, 301 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. C. W. Gardiner and M. J. Collet, Phys. Rev. A: At., Mol., Opt. Phys. 31, 3761 (1985).

    Article  ADS  Google Scholar 

  19. C. W. Gardiner and P. Zoller, Quantum Noise (Springer, Berlin, 2000).

    MATH  Google Scholar 

  20. A. M. Chebotarev, Lectures on Quantum Probability (Sociedad Mathematica Mexicana, Mexico, United Mexican States, 2000).

    MATH  Google Scholar 

  21. A. S. Kholevo, Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravleniya 83, 31 (1991).

    Google Scholar 

  22. W. J. Munro and C. W. Gardiner, Phys. Rev. A: At., Mol., Opt. Phys. 53, 2633 (1996).

    Article  ADS  Google Scholar 

  23. A. M. Basharov, Sov. Phys. JETP 75(4), 611 (1992).

    Google Scholar 

  24. A. M. Basharov, V. N. Gorbachev, and A. A. Rodichkina, Phys. Rev. A: At., Mol., Opt. Phys. 74, 042313 (2006).

    Article  ADS  Google Scholar 

  25. A. M. Basharov, JETP 89(6), 1063 (1999).

    Article  ADS  Google Scholar 

  26. A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves (Kluwer, Dordrecht, The Netherlands, 1999).

    MATH  Google Scholar 

  27. A. M. Basharov, Teor. Fiz. (Samara) 9, 7 (2008).

    Google Scholar 

  28. M. Lax, Phys. Rev. 145, 110 (1966).

    Article  ADS  Google Scholar 

  29. V. P. Belavkin, Usp. Mat. Nauk 47, 47 (1992).

    MathSciNet  Google Scholar 

  30. V. P. Belavkin, Theor. Math. Phys. 110(1), 35 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  31. G. Lindblad, Commun. Math. Phys. 48, 119 (1976).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. A. M. Basharov, Phys. Lett. A 375, 784 (2011); http://arxiv.org/abs/1101.3288.

    Article  ADS  Google Scholar 

  33. K. Hammerer, A. S. Sørensen, and E. S. Polzik, Rev. Mod. Phys. 82, 1041 (2010).

    Article  ADS  Google Scholar 

  34. A. M. Basharov, Bull. Russ. Acad. Sci.: Phys. 75(2), 161 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Basharov.

Additional information

Original Russian Text © A.M. Basharov, 2011, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 140, No. 3, pp. 431–449.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basharov, A.M. Spontaneous emission of the non-Wiener type. J. Exp. Theor. Phys. 113, 376–393 (2011). https://doi.org/10.1134/S1063776111080036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111080036

Keywords

Navigation