Skip to main content
Log in

Spontaneous phase transitions in magnetic films with a modulated structure

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The influence of monoperiodic and biperiodic bias fields on the nucleation of domain structures in quasi-uniaxial magnetic films near the Curie point has been studied experimentally. The main types of observed nonuniform magnetic moment distributions have been established and chains of a devil’s staircase phase transitions are shown to be realized when the films are slowly cooled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Butterworth-Heinemann, Oxford, 1984).

    Google Scholar 

  2. P. Bak, Rep. Prog. Phys. 45, 587 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  3. Modulated Structures Materials, Ed. by T. Tsacalacos (Martinus Nijhoff, Dordrecht, The Netherlands, 1984).

    Google Scholar 

  4. Yu. A. Izyumov, Sov. Phys.—Usp. 27(11), 845 (1984).

    Article  ADS  Google Scholar 

  5. Yu. A. Izyumov and V. N. Syromyatnikov, Phase Transitions and Crystal Symmetry (Nauka, Moscow, 1984; Springer, Berlin, 1990).

    Google Scholar 

  6. S. Chikasumi, Physics of Ferromagnetism (Syokabo, Tokyo, 1980; Mir, Moscow, 1983).

    Google Scholar 

  7. J. Villain, Chem. Phys. Solids 11, 303 (1959).

    Article  ADS  Google Scholar 

  8. A. Yoshimori, J. Phys. Soc. Jpn. 14, 807 (1959).

    Article  ADS  Google Scholar 

  9. T. A. Kaplan, Phys. Rev. 116, 888 (1959).

    Article  ADS  Google Scholar 

  10. A. Herpin and P. Meriel, J. Phys. (Paris) 22, 337 (1961).

    Google Scholar 

  11. E. M. Lifshitz, Zh. Eksp. Teor. Fiz. 11, 255 (1941).

    Google Scholar 

  12. I. E. Dzyaloshinskii, Sov. Phys. JETP 19, 960 (1964).

    Google Scholar 

  13. I. E. Dzyaloshinskii, Sov. Phys. JETP 20, 665 (1964).

    Google Scholar 

  14. R. M. Hornreich, M. Luban, and S. Strikman, Phys. Rev. Lett. 35, 1678 (1975).

    Article  ADS  Google Scholar 

  15. S. Aubry, in Solitons and Condensed Matter Physics, Ed. by A. R. Bishop and T. Schneider (Springer, New York, 1978), p. 264.

    Chapter  Google Scholar 

  16. H. L. Royden, Real Analysis (Prentice-Hall, Englewood Cliffs, New Jersey, United States, 1988).

    MATH  Google Scholar 

  17. A. A. Fraerman and M. V. Sapozhnikov, Phys. Rev. B: Condens. Matter 65, 184433 (2002).

    Article  ADS  Google Scholar 

  18. R. M. Walser, in Introduction to Complex Mediums for Optics and Electromagnetics, Ed. by W. S. Wieglhofer and A. Lakhtakia (SPIE Press, Bellingham, Washington, United States, 2003), p. Z5.001.

    Google Scholar 

  19. E. Yablonovitch, in Introduction to Complex Mediums for Optics and Electromagnetics, Ed. by W. S. Wieglhofer and A. Lakhtakia (SPIE Press, Bellingham, Washington, United States, 2003), p. Z5.002.

    Google Scholar 

  20. J.-M. Lourtioz, H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices (Springer, New York, 2008).

    MATH  Google Scholar 

  21. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, New Jersey, United States, 2010).

    Google Scholar 

  22. A. V. Golenishchev-Kutuzov, V. A. Golenishchev-Kutuzov, and R. I. Kalimullin, Photonic and Phononic Crystals: The Formation and Application in Optoelectronics and Acoustoelectronics (Nauka, Moscow, 2010) [in Russian].

    Google Scholar 

  23. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Dijafari-Rouhami, Phys. Rev. Lett. 71, 2022 (1993).

    Article  ADS  Google Scholar 

  24. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, Nature (London) 461, 78 (2009).

    Article  ADS  Google Scholar 

  25. J. O. Vasseur, L. Dobrzynski, B. Dijafari-Rouhami, and H. Puszkarski, Phys. Rev. B: Condens. Matter 54, 1043 (1996).

    Article  ADS  Google Scholar 

  26. L. Brillouin, Wave Propagation in Periodic Structures (McGraw Hill, New York, 1946).

    MATH  Google Scholar 

  27. L. Brillouin and M. Parodi, Propagation des Ondes Dans les Milieux Périodiques (Masson, Paris, 1956) [in French].

    MATH  Google Scholar 

  28. S. V. Gerus and V. D. Kharitonov, Fiz. Met. Metalloved. 58, 1069 (1984).

    Google Scholar 

  29. A. V. Voronenko, S. V. Gerus, and V. D. Kharitonov, Russ. Phys. J. 31(11), 915 (1988).

    Google Scholar 

  30. A. Yu. Annenkov, A. P. Vinogradov, S. V. Gerus, I. A. Ryzhikov, S. A. Shishkov, and M. Inoue, Bull. Russ. Acad. Sci.: Phys. 71(11), 1569 (2007).

    Article  Google Scholar 

  31. N. N. Kiryukhin and F. V. Lisovskii, Sov. Phys. Solid State 10(3), 556 (1968).

    Google Scholar 

  32. G. V. Arzamastseva, M. G. Evtikhov, F. V. Lisovskii, and E. G. Mansvetova, in Proceedings of the XXI International Conference “New in Magnetism and Magnetic Materials,” Faculty of Physics, Moscow State University, Moscow, Russia, November 16–21, 2009 (Moscow State University, Moscow, 2009), p. 519.

    Google Scholar 

  33. V. V. Tarasenko, Sov. Phys. Solid State 22(2), 294 (1980).

    Google Scholar 

  34. A. Hubert, A. P. Malozemoff, and J. C. De Luca, J. Appl. Phys. 45, 3562 (1974).

    Article  ADS  Google Scholar 

  35. I. E. Dikshtein, F. V. Lisovskii, E. G. Mansvetova, and V. V. Tarasenko, Sov. Phys. JETP 59(4), 863 (1984).

    Google Scholar 

  36. I. E. Dikshtein, F. V. Lisovskii, and E. G. Mansvetova, JETP 98(6), 1152 (2004).

    Article  ADS  Google Scholar 

  37. G. V. Arzamastseva, M. G. Evtikhov, F. V. Lisovskii, E. G. Mansvetova, and M. P. Temiryazeva, JETP 107(2), 237 (2008).

    Article  ADS  Google Scholar 

  38. I. E. Dikshtein, F. V. Lisovskii, E. G. Mansvetova, V. V. Tarasenko, and E. S. Chizhik, in Abstracts of Papers of the X All-Union School-Workshop “New Magnetic Materials for Microelectronics,” Institute of Physics, Academy of Sciences of the LatvSSR, Riga, Soviet Union, 1986 (IF AN LatvSSR, Riga, 1986), p. 134.

    Google Scholar 

  39. I. E. Dikshtein, F. V. Lisovskii, E. G. Mansvetova, and E. S. Chizhik, Sov. Phys. Solid State 28(12), 2115 (1986).

    Google Scholar 

  40. I. E. Dikshtein, F. V. Lisovskii, E. G. Mansvetova, and V. V. Tarasenko, Sov. Phys. JETP 73(1), 114 (1991).

    Google Scholar 

  41. G. V. Arzamastseva, F. V. Lisovskii, and E. G. Mansvetova, JETP Lett. 67(9), 738 (1998).

    Article  ADS  Google Scholar 

  42. G. V. Arzamastseva, F. V. Lisovskii, and E. G. Mansvetova, JETP 87(6), 1136 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. V. Lisovskii.

Additional information

Original Russian Text © G.V. Arzamastseva, M.G. Evtikhov, F.V. Lisovskii, E.G. Mansvetova, 2011, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 140, No. 3, pp. 516–526.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arzamastseva, G.V., Evtikhov, M.G., Lisovskii, F.V. et al. Spontaneous phase transitions in magnetic films with a modulated structure. J. Exp. Theor. Phys. 113, 450–458 (2011). https://doi.org/10.1134/S1063776111080024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111080024

Keywords

Navigation