Skip to main content
Log in

On time-optimal NMR control of states of qutrits represented by quadrupole nuclei with the spin I = 1

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Elementary logical operators (selective rotation, Fourier transform, controllable phase shift, and SUM gate) are considered for a quantum computer based on three-level systems (qutrits) represented by nuclear spins I = 1 under nuclear magnetic resonance conditions. The computer simulation of the realization of these operators by means of simple and composite selective radiofrequency (RF) pulses and optimized RF pulses is performed. The time dependence of the amplitude of last pulses is found by numerical optimization at different durations. Two variants are proposed for realization of a two-qutrit SUM gate by using one-qutrit or two-qutrit optimized RF pulses. The calculated time dependences of realization errors were used to study the time optimality of different methods for obtaining gates, proposed earlier and in this paper. The advantages and disadvantages of each of the methods are evaluated for different values of physical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. C. Ralph, K. J. Resch, and A. Gilchrist, Phys. Rev. A: At., Mol., Opt. Phys. 75, 022313 (2007).

    Article  ADS  Google Scholar 

  2. B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, Nat. Phys. 5, 134 (2009).

    Article  Google Scholar 

  3. D. Aharonov, W. van Dam, J. Kampe, Z. Landau, S. Lloyd, and O. Regev, SIAM J. Comput. 37(1), 166 (2007); arXiv:quant-ph/0405098.

    Article  MathSciNet  MATH  Google Scholar 

  4. B. A. Chase and A. J. Landahl, arXiv:quant-ph//0802.1207.

  5. K. G. H. Vollbrecht and J. I. Cirac, Phys. Rev. Lett. 100, 010501 (2008).

    Article  ADS  Google Scholar 

  6. D. Nagaj and P. Wocjan, Phys. Rev. A: At., Mol., Opt. Phys. 78, 032311 (2008).

    Article  ADS  Google Scholar 

  7. D. Nagaj, arXiv:quant-ph/1002.0420.

  8. J. Cai, A. Miyake, W. Dür, and H. J. Briegel, Phys. Rev. A: At., Mol., Opt. Phys. 82, 052309 (2010).

    Article  ADS  Google Scholar 

  9. A. Muthukrishnan and C. R. Stroud, Jr., Phys. Rev. A: At., Mol., Opt. Phys. 62, 052309 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  10. S. D. Bartlett, H. de Guise, and B. C. Sanders, Phys. Rev. A: At., Mol., Opt. Phys. 65, 052316 (2002).

    Article  ADS  Google Scholar 

  11. V. E. Zobov, V. P. Shauro, and A. S. Ermilov, Pis’ma Zh. Eksp. Teor. Fiz. 87(6), 385 (2008) [JETP Lett. 87 (6), 334 (2008)].

    Google Scholar 

  12. B. Tamir, Phys. Rev. A: At., Mol., Opt. Phys. 77, 022326 (2008).

    Article  ADS  Google Scholar 

  13. A. Kushnerov, Ternary Digital Techniques: Retrospective and Contemporaneity (Ben-Gurion University Press, Bersabee, Israel, 2005) [in Russian].

    Google Scholar 

  14. V. E. Zobov and D. I. Pekhterev, Pis’ma Zh. Eksp. Teor. Fiz. 89(5), 303 (2009) [JETP Lett. 89 (5), 260 (2009)].

    Google Scholar 

  15. D. Gottesman, Lect. Notes Comput. Sci. 1509, 302 (1999).

    Article  MathSciNet  Google Scholar 

  16. D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A: At., Mol., Opt. Phys. 64, 012310 (2001).

    Article  ADS  Google Scholar 

  17. A. Yu. Vlasov, J. Math. Phys. 43, 2959 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. J. Daboul, X. Wang, and B. C. Sanders, J. Phys. A: Math. Gen. 36, 2525 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. A. B. Klimov, R. Guzman, J. C. Retamal, and C. Saavedra, Phys. Rev. A: At., Mol., Opt. Phys. 67, 062313 (2003).

    Article  ADS  Google Scholar 

  20. Ch. Slichter, Principles of Magnetic Resonance (Springer, Heidelberg, 1978; Mir, Moscow, 1981).

    Google Scholar 

  21. R. Das, A. Mitra, V. Kumar, and A. Kumar, Int. J. Quantum Inf. 1, 387 (2003).

    Article  Google Scholar 

  22. A. K. Khitrin and B. M. Fung, J. Chem. Phys. 112, 6963 (2000).

    Article  ADS  Google Scholar 

  23. V. L. Ermakov and B. M. Fung, Phys. Rev. A: At., Mol., Opt. Phys. 66, 042310 (2002).

    Article  ADS  Google Scholar 

  24. R. Das and A. Kumar, Phys. Rev. A: At., Mol., Opt. Phys. 68, 032304 (2003).

    Article  ADS  Google Scholar 

  25. R. Das and A. Kumar, Appl. Phys. Lett. A 89, 024107 (2006).

    Article  ADS  Google Scholar 

  26. T. Gopinath and A. Kumar, J. Magn. Reson. 193, 2 (2008); arXiv:quant-ph/0909.4034.

    Article  Google Scholar 

  27. A. K. Khitrin, H. Sun, and B. M. Fung, Phys. Rev. A: At., Mol., Opt. Phys. 63, 020301 (2001).

    Article  ADS  Google Scholar 

  28. A. K. Khitrin and B. M. Fung, Phys. Rev. A: At., Mol., Opt. Phys. 64, 032306 (2001).

    Article  ADS  Google Scholar 

  29. V. E. Zobov and V. P. Shauro, Pis’ma Zh. Eksp. Teor. Fiz. 86(4), 260 (2007) [JETP Lett. 86 (4), 230 (2007)].

    Google Scholar 

  30. V. E. Zobov and V. P. Shauro, Zh. Eksp. Teor. Fiz. 135(1), 10 (2009) [JETP 108 (1), 5 (2009)].

    Google Scholar 

  31. T. Vosegaard, C. Kehlet, N. Khaneja, S. J. Glaser, and N. Chr. Nielsen, J. Am. Chem. Soc. 127, 13768 (2005).

    Article  Google Scholar 

  32. N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. J. Glaser, J. Magn. Reson. 172, 296 (2005).

    Article  ADS  Google Scholar 

  33. J.-S. Lee, R. R. Regatte, and A. Jerschow, J. Chem. Phys. 129, 224510 (2008).

    Article  ADS  Google Scholar 

  34. I. I. Maximov, J. Salomon, G. Turinici, and N. Chr. Nielsen, J. Chem. Phys. 132, 084107 (2010).

    Article  ADS  Google Scholar 

  35. H. Kampermann and W. S. Veeman, J. Chem. Phys. 122, 214108 (2005).

    Article  ADS  Google Scholar 

  36. D. O. Soares-Pinto, L. C. Celeri, R. Auccaise, F. F. Fanchini, E. R. deAzevedo, J. Maziero, T. J. Bonagamba, and R. M. Serra, Phys. Rev. A: At., Mol., Opt. Phys. 81, 062118 (2010).

    Article  ADS  Google Scholar 

  37. E. M. Fortunato, M. A. Pravia, N. Boulant, G. Teklemariam, T. F. Havel, and D. G. Cory, J. Chem. Phys. 116, 7599 (2002).

    Article  ADS  Google Scholar 

  38. V. P. Shauro, D. I. Pekhterev, and V. E. Zobov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 41 (2007) [Russ. Phys. J. 50 (6), 566 (2007)].

  39. C. A. Ryan, C. Negrevergne, M. Laforest, E. Knill, and R. Laflamme, Phys. Rev. A: At., Mol., Opt. Phys. 78, 012328 (2008).

    Article  ADS  Google Scholar 

  40. P. Rebentrost and F. K. Wilhelm, Phys. Rev. B: Condens. Matter 79, 060507 (2009).

    Article  ADS  Google Scholar 

  41. F. Motzoi, J. M. Gambetta, P. Rebentrost, and F. K. Wilhelm, Phys. Rev. Lett. 103, 110501 (2009).

    Article  ADS  Google Scholar 

  42. A. S. Ermilov and V. E. Zobov, Opt. Spektrosk. 103(6), 994 (2007) [Opt. Spectrosc. 103 (6), 969 (2007)].

    Article  Google Scholar 

  43. T. Gopinath and A. Kumar, Phys. Rev. A: At., Mol., Opt. Phys. 73, 022326 (2006).

    Article  ADS  Google Scholar 

  44. G. P. Berman, G. D. Doolen, G. V. Lopez, and V. I. Tsifrinovich, Phys. Rev. A: At., Mol., Opt. Phys. 61, 042307 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  45. N. Khaneja, R. Brockett, and S. J. Glaser, Phys. Rev. A: At., Mol., Opt. Phys. 63, 032308 (2001).

    Article  ADS  Google Scholar 

  46. T. Schulte-Herbrüggen, A. Spörl, N. Khaneja, and S. J. Glaser, Phys. Rev. A: At., Mol., Opt. Phys. 72, 042331 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Zobov.

Additional information

Original Russian Text © V.E. Zobov, V.P. Shauro, 2011, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 140, No. 2, pp. 211–223.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zobov, V.E., Shauro, V.P. On time-optimal NMR control of states of qutrits represented by quadrupole nuclei with the spin I = 1. J. Exp. Theor. Phys. 113, 181–191 (2011). https://doi.org/10.1134/S1063776111060094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111060094

Keywords

Navigation