Skip to main content
Log in

Bipolar charging of dust particles under ultraviolet radiation

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The photoemission charging of dust particles under ultraviolet radiation from a xenon lamp has been investigated. The velocities of yttrium dust particles with a work function of 3.3 eV and their charges have been determined experimentally; the latter are about 400–500 and about 100 elementary charges per micron of radius for the positively and negatively charged fractions, respectively. The dust particle charging and the dust cloud evolution in a photoemission cell after exposure to an ultraviolet radiation source under the applied voltage have been simulated numerically. The photoemission charging of dust particles has been calculated on the basis of nonlocal and local charging models. Only unipolar particle charging is shown to take place in a system of polydisperse dust particles with the same photoemission efficiency. It has been established that bipolar charging is possible in the case of monodisperse particles with different quantum efficiencies. Polydispersity in this case facilitates the appearance of oppositely charged particles in a photoemission plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Fortov, A. P. Nefedov, O. S. Vaulina, A. M. Lipaev, V. I. Molotkov, A. A. Samaryan, V. P. Nikitski, A. I. Ivanov, S. F. Savin, A. V. Kalmykov, A. Ya. Solov’ev, and P. V. Vinogradov, Zh. Eksp. Teor. Fiz. 114(6), 2004 (1998) [JETP 87 (6), 1087 (1998)].

    Google Scholar 

  2. O. S. Vaulina, A. P. Nefedov, O. F. Petrov, and V. E. Fortov, Zh. Eksp. Teor. Fiz. 119(6), 1129 (2001) [JETP 92 (6), 979 (2001)].

    Google Scholar 

  3. M. Horanyi and S. Robertson, Phys. Rev. Lett. 84, 6034 (2000).

    Article  ADS  Google Scholar 

  4. J. E. Colwell, S. R. Robertson, M. Horanyi, X. Wang, A. Poppe, and P. Wheeler, J. Aerosp. Eng. 22, 2 (2009).

    Article  Google Scholar 

  5. C. R. Seon, W. Choe, K. B. Chai, H. Y. Park, and S. Park, New J. Phys. 11, 013 015 (2009).

    Article  Google Scholar 

  6. A. V. Filippov, V. E. Fortov, A. F. Pal’, and A. N. Starostin, Zh. Eksp. Teor. Fiz. 123(4), 775 (2003) [JETP 96 (4), 684 (2003)].

    Google Scholar 

  7. A. V. Filippov, A. F. Pal’, and A. N. Starostin, in Physics of Extreme States of Matter—2004, Ed. by V. E. Fortov, V. P. Efremov, and K. V. Khishchenko (Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia, 2004), p. 199 [in Russian].

    Google Scholar 

  8. L.-W. Ren, Z.-X. Wang, X. Wang, J.-Y. Liu, and Y. Liu, Phys. Plasmas 13, 082 306 (2006).

    Google Scholar 

  9. A. V. Filippov, A. F. Pal, and A. N. Starostin, in Proceedings of the Second International Conference “Physics of Dusty and Burning Plasmas,” Odessa, Ukraine, August 26–30, 2007 (Odessa, 2007), p. 44.

  10. A. V. Gavrikov, V. E. Fortov, O. F. Petrov, V. N. Babichev, A. V. Filippov, A. F. Pal, and A. N. Starostin, AIP Conf. Proc. 1041, 211 (2008).

    Article  ADS  Google Scholar 

  11. A. M. Ignatov, Fiz. Plazmy (Moscow) 35(8), 704 (2009) [Plasma Phys. Rep. 35 (8), 647 (2009)].

    Google Scholar 

  12. W. J. Miloch, S. V. Vladimirov, H. L. Paccseli, and J. Trulsen, New J. Phys. 11, 043 005 (2009).

    Article  Google Scholar 

  13. Handbook of Physical Quantities Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, Florida, United States, 1997).

    Google Scholar 

  14. N. A. Fuchs, The Mechanics of Aerosols (Pergamon, New York, 1964).

    Google Scholar 

  15. J. Dutton, J. Phys. Chem. Ref. Data 4, 577 (1975).

    Article  ADS  Google Scholar 

  16. J. L. Pack, R. E. Voshall, A. V. Phelps, and L. E. Kline, J. Appl. Phys. 71, 5363 (1992).

    Article  ADS  Google Scholar 

  17. A. V. Filippov, N. A. Dyatko, A. F. Pal’, and A. N. Starostin, Fiz. Plazmy 29(3), 214 (2003) [Plasma Phys. Rep. 29 (3), 190 (2003)].

    Google Scholar 

  18. A. A. Kudryavtsev and L. D. Tsendin, Pis’ma Zh. Tekh. Fiz. 28(15), 1 (2002) [Tech. Phys. Lett. 28 (8), 621 (2002)].

    Google Scholar 

  19. A. M. Brodskii and Yu. Ya. Gurevich, The Theory of Electron Emission from Metals (Nauka, Moscow, 1973), p. 87 [in Russian].

    Google Scholar 

  20. L. G. D’yachkov, S. A. Khrapak, and A. G. Khrapak, in Physics of Extreme States of Matter—2007, Ed. by V. E. Fortov, V. P. Efremov, and K. V. Khishchenko (Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia, 2007), p. 299 [in Russian].

    Google Scholar 

  21. S. I. Popel, A. P. Golub’, and T. V. Losseva, Pis’ma Zh. Eksp. Teor. Fiz. 74(7), 396 (2001) [JETP Lett. 74 (7), 362 (2001)].

    Google Scholar 

  22. A. Sommer, Photoemissive Materials (Wiley, New York, 1968; Energiya, Moscow, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Filippov.

Additional information

Original Russian Text © A.V. Filippov, V.N. Babichev, V.E. Fortov, A.V. Gavrikov, A.F. Pal’, O.F. Petrov, A.N. Starostin, N.E. Sarkarov, 2011, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 139, No. 5, pp. 1009–1021.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippov, A.V., Babichev, V.N., Fortov, V.E. et al. Bipolar charging of dust particles under ultraviolet radiation. J. Exp. Theor. Phys. 112, 884–895 (2011). https://doi.org/10.1134/S1063776111040054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111040054

Keywords

Navigation