Skip to main content
Log in

Convective instability of solidification with a phase transition zone

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The morphological instability of solidification is analytically studied in the presence of an anisotropic and heterogeneous phase transition zone with allowance for a liquid flow and convective heat-andmass transfer in this two-phase zone. The mechanism of breaking the stability of solidification is considered; it consists in a convective heat and impurity transfer during a liquid flow along channels in the phase transition zone. The morphological instability is subjected to linear analysis with allowance for a liquid flow in the liquid phase of the system, impurity diffusion in the two-phase zone, and the dependence of the transfer coefficients on the phase composition. The perturbation evolution parameter is determined for an anisotropic and heterogeneous two-phase zone, and neutral stability curves of the process are obtained. It is shown that taking into account impurity diffusion and an increase in the heterogeneity of the phase transition zone broaden the instability region and that a decrease in the anisotropy narrows this region. A new criterion of convective morphological instability of solidification with a two-phase zone is found, and it substantially broadens the instability region when the liquid flow velocity increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Taylor, Philos. Trans. R. Soc. London, Ser. A 223, 289 (1923).

    Article  ADS  MATH  Google Scholar 

  2. W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 35, 444 (1964).

    Article  ADS  Google Scholar 

  3. C. C. Lin, The Theory of Hydrodynamic Stability (Cambridge University Press, Cambridge, 1955).

    MATH  Google Scholar 

  4. G. P. Ivantsov, Dokl. Akad. Nauk SSSR 81, 179 (1951).

    Google Scholar 

  5. R. F. Sekerka, in Crystal Growth: An Introduction, Ed. by P. Hartman (North-Holland, Amsterdam, The Netherlands, 1973), p. 403.

    Google Scholar 

  6. R. N. Hills, D. E. Loper, and P. H. Roberts, Q. J. Mech. Appl. Math. 36, 505 (1983).

    Article  MATH  Google Scholar 

  7. M. G. Worster, J. Fluid Mech. 167, 481 (1986).

    Article  ADS  MATH  Google Scholar 

  8. D. J. Wollkind and L. A. Segel, Philos. Trans. R. Soc. London, Ser. A 268, 351 (1970).

    Article  ADS  Google Scholar 

  9. V. T. Borisov, The Theory of a Two-Phase Zone of Metallic Ingots (Metallurgiya, Moscow, 1987) [in Russian].

    Google Scholar 

  10. P. N. Vabishchevich, V. V. Mansurov, and A. G. Churbanov, Khim. Prom-st. (St. Petersburg), No. 10, 39 (1994).

  11. D. V. Alexandrov, A. G. Churbanov, and P. N. Vabishchevich, Int. J. Fluid Mech. Res. 26, 248 (1999).

    Google Scholar 

  12. Yu. A. Buyevich, D. V. Alexandrov, and V. V. Mansurov, Macrokinetics of Crystallization (Begell House, New York, United States, 2001).

    Google Scholar 

  13. D. V. Alexandrov and A. P. Malygin, Dokl. Akad. Nauk 411(3), 390 (2006) [Dokl. Earth Sci. 411 (2), 1407 (2006)].

    Google Scholar 

  14. D. V. Alexandrov, A. P. Malygin, and I. V. Alexandrova, Ann. Glaciol. 44, 118 (2006).

    Article  ADS  Google Scholar 

  15. J. S. Wettlaufer, M. G. Worster, and H. E. Huppert, Geophys. Res. Lett. 24, 1251 (1997).

    Article  ADS  Google Scholar 

  16. J. S. Wettlaufer, M. G. Worster, and H. E. Huppert, J. Fluid Mech. 344, 291 (1997).

    Article  ADS  Google Scholar 

  17. T. P. Schulze and M. G. Worster, J. Fluid Mech. 388, 197 (1999).

    Article  ADS  MATH  Google Scholar 

  18. M. I. Bergman, D. R. Fearn, J. Bloxham, and M. C. Shannon, Metall. Mater. Trans. A 28, 859 (1997).

    Google Scholar 

  19. D. L. Feltham, M. G. Worster, and J. S. Wettlaufer, J. Geophys. Res. 107, 3009 (2002).

    Article  ADS  Google Scholar 

  20. D. L. Feltham and M. G. Worster, J. Fluid Mech. 391, 337 (1999).

    Article  ADS  MATH  Google Scholar 

  21. A. Hellawell, J. R. Sarazin, and R. S. Steube, Philos. Trans. R. Soc. London, Ser. A 345, 507 (1993).

    Article  ADS  Google Scholar 

  22. S. Tait and C. Jaupart, J. Geophys. Res. 97, 6735 (1992).

    Article  ADS  Google Scholar 

  23. M. I. Bergman and D. R. Fearn, Geophys. Res. Lett. 21, 477 (1994).

    Article  ADS  Google Scholar 

  24. G. K. Batchelor, Ann. Rev. Fluid Mech. 6, 227 (1974).

    Article  ADS  Google Scholar 

  25. P. Ya. Polubarinova-Kochina, Theory of Ground Water Movement (Princeton University Press, Princeton, New Jersey, United States, 1962; Nauka, Moscow, 1977).

    MATH  Google Scholar 

  26. N. Ono and T. Kasai, Ann. Glaciol. 6, 298 (1980).

    ADS  Google Scholar 

  27. S. Martin and P. Kauffman, J. Fluid Mech. 64, 507 (1974).

    Article  ADS  Google Scholar 

  28. J. S. Wettlaufer, M. G. Worster, and H. E. Huppert, J. Geophys. Res. 105, 1123 (2000).

    Article  ADS  Google Scholar 

  29. D. V. Alexandrov and A. O. Ivanov, J. Cryst. Growth 210, 797 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Malygin.

Additional information

Original Russian Text © D.V. Alexandrov, A.P. Malygin, 2011, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 139, No. 4, pp. 688–694.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexandrov, D.V., Malygin, A.P. Convective instability of solidification with a phase transition zone. J. Exp. Theor. Phys. 112, 596–601 (2011). https://doi.org/10.1134/S1063776111030010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111030010

Keywords

Navigation