Skip to main content
Log in

Strong-coupling regime of the nonlinear landau-zener problem for photo- and magnetoassociation of cold atoms

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We discuss the strong-coupling regime of the nonlinear Landau-Zener problem occurring at coherent photo- and magneto-association of ultracold atoms. We apply a variational approach to an exact third-order nonlinear differential equation for the molecular state probability and construct an accurate approximation describing the time dynamics of the coupled atom-molecule system. The resultant solution improves the accuracy of the previous approximation [22]. The obtained results reveal a remarkable observation that in the strong-coupling limit, the resonance crossing is mostly governed by the nonlinearity, while the coherent atom-molecule oscillations occurring soon after crossing the resonance are principally of a linear nature. This observation is supposedly general for all nonlinear quantum systems having the same generic quadratic nonlinearity, due to the basic attributes of the resonance crossing processes in such systems. The constructed approximation turns out to have a larger applicability range than it was initially expected, covering the whole moderate-coupling regime for which the proposed solution accurately describes ail the main characteristics of the system evolution except the amplitude of the coherent atom-molecule oscillation, which is rather overestimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995).

    Article  ADS  Google Scholar 

  2. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science (Washington) 269, 198 (1995).

    Article  ADS  Google Scholar 

  3. W. D. Phillips, Rev. Mod. Phys. 70, 721 (1998).

    Article  ADS  Google Scholar 

  4. C. N. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707 (1998).

    Article  ADS  Google Scholar 

  5. S. Chu, Rev. Mod. Phys. 70, 685 (1998).

    Article  ADS  Google Scholar 

  6. A. Fioretti, D. Comparat, A. Crubellier, O. Dulieu, F. Masnou-Seeuws, and P. Pillet, Phys. Rev. Lett. 80, 4402 (1998); A. N. Nikolov, E. E. Eyler, X. T. Wang, J. Li, H. Wang, W. C. Stwalley, and P. L. Gould, Phys. Rev. Lett. 82, 703 (1999).

    Article  ADS  Google Scholar 

  7. J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, Rev. Mod. Phys. 71, 1 (1999); F. Masnou-Seeuws and P. Pillet, Adv. At., Mol., Opt. Phys. 47, 53 (2001).

    Article  ADS  Google Scholar 

  8. W. C. Stwalley, Phys. Rev. Lett. 37, 1628 (1976); E. Tiesinga, B. J. Verhaar, and H. T. C. Stoof, Phys. Rev. A: At., Mol., Opt. Phys. 47, 4114 (1993).

    Article  ADS  Google Scholar 

  9. S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and W. Ketterle, Nature (London) 392, 151 (1998).

    Article  ADS  Google Scholar 

  10. L. D. Landau, Phys. Z. Sowjetunion 2, 46 (1932); C. Zener, Proc. R. Soc. London, Ser. A 137, 696 (1932).

    MATH  Google Scholar 

  11. E. C. G. Stuckelberg, Helv. Phys. Acta 5, 369 (1932); E. Majorana, Nuovo Cimento 9, 45 (1932).

    Google Scholar 

  12. T. Kohler, K. Goral, and P. S. Julienne, Rev. Mod. Phys. 78, 1311 (2006).

    Article  ADS  Google Scholar 

  13. A. V. Bezverbnyi, I. M. Beterov, A. M. Tumaikin, and I. I. Ryabtsev, Zh. Eksp. Teor. Fiz. 111(3), 796 (1997) [JETP 84 (3), 437 (1997)].

    Google Scholar 

  14. V. A. Benderskii, E. V. Vetoshkin, and E. I. Kats, Zh. Eksp. Teor. Fiz. 124(2), 259 (2003) [JETP 97 (2), 232 (2003)]; V. A. Benderskii, E. V. Vetoshkin, and E. I. Kats, Pis’ma Zh. Eksp. Teor. Fiz. 80 (6), 493 (2004) [JETP Lett. 80 (6), 436 (2004)].

    Google Scholar 

  15. B. L. Oksengendler and N. N. Turaeva, Zh. Eksp. Teor. Fiz. 130(3), 472 (2006) [JETP 103 (3), 411 (2006)].

    Google Scholar 

  16. O. Zobay and B. M. Garraway, Phys. Rev. A: At., Mol., Opt. Phys. 61, 033603 (2000).

    Article  ADS  Google Scholar 

  17. A. Ishkhanyan, M. Mackie, A. Carmichael, P. L. Gould, and J. Javanainen, Phys. Rev. A: At., Mol., Opt. Phys. 69, 043612 (2004).

    Article  ADS  Google Scholar 

  18. I. Tikhonenkov, E. Pazy, Y. B. Band, M. Fleischhauer, and A. Vardi, Phys. Rev. A: At., Mol., Opt. Phys. 73, 043605 (2006).

    Article  ADS  Google Scholar 

  19. E. Altman and A. Vishwanath, Phys. Rev. Lett. 95, 110404 (2005).

    Article  ADS  Google Scholar 

  20. R. A. Barankov and L. S. Levitov, arXiv:cond-mat//0506323.

  21. A. Ishkhanyan, J. Javanainen, and H. Nakamura, J. Phys. A: Math. Gen. 38, 3505 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. A. Ishkhanyan, J. Javanainen, and H. Nakamura, J. Phys. A: Math. Gen. 39, 14887 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. P. D. Drummond, K. V. Kheruntsyan, and H. He, Phys. Rev. Lett. 81, 3055 (1998).

    Article  ADS  Google Scholar 

  24. J. Javanainen and M. Mackie, Phys. Rev. A: At., Mol., Opt. Phys. 59, R3186 (1999); M. Koštrun, M. Mackie, R. Cote, and J. Javanainen, Phys. Rev. A: At., Mol., Opt. Phys. 62, 063 616 (2000).

    Article  ADS  Google Scholar 

  25. N. Sahakyan, H. Azizbekyan, H. Ishkhanyan, R. Sokhoyan, and A. Ishkhanyan, Laser Phys. 20, 291 (2010).

    Article  ADS  Google Scholar 

  26. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, United States, 1965).

    Google Scholar 

  27. E. Hodby, S. T. Thompson, C. A. Regal, M. Greiner, A. C. Wilson, D. S. Jin, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 94, 120 402 (2005).

    Article  Google Scholar 

  28. K. Xu, T. Mukaiyama, J. R. Abo-Shaeer, J. K. Chin, D. E. Miller, and W. Ketterle, Phys. Rev. Lett. 91, 210402 (2003).

    Article  ADS  Google Scholar 

  29. E. E. Nikitin, Opt. Spektrosk. 13, 761 (1962); E. E. Nikitin, Discuss. Faraday Soc. 33, 14 (1962).

    Google Scholar 

  30. Ju. N. Demkov and M. Kunike, Vestn. Leningr. Univ., Ser. 4: Fiz., Khim. 16, 39 (1969).

    MathSciNet  Google Scholar 

  31. A. Ishkhanyan, B. Joulakian, and K.-A. Suominen, Eur. Phys. J. D 48, 397 (2008); R. Sokhoyan, H. Azizbekyan, C. Leroy, and A. Ishkhanyan, J. Contemp. Phys. 44, 272 (2009).

    Article  ADS  Google Scholar 

  32. R. Sokhoyan, C. Leroy, A. Ishkhanyan, K. A. Suominen, and H. R. Jauslin, Eur. Phys. J. D 56, 421 (2010); A. M. Ishkhanyan, Eur. Phys. Lett. 90, 30007 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ishkhanyan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokhoyan, R., Azizbekyan, H., Leroy, C. et al. Strong-coupling regime of the nonlinear landau-zener problem for photo- and magnetoassociation of cold atoms. J. Exp. Theor. Phys. 112, 543–550 (2011). https://doi.org/10.1134/S1063776111020221

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111020221

Keywords

Navigation